Suppr超能文献

利用超低负载水电解槽和现有铱资源实现能源部门完全脱碳的途径。

Pathway to Complete Energy Sector Decarbonization with Available Iridium Resources using Ultralow Loaded Water Electrolyzers.

作者信息

Taie Zachary, Peng Xiong, Kulkarni Devashish, Zenyuk Iryna V, Weber Adam Z, Hagen Christopher, Danilovic Nemanja

机构信息

Energy Technologies Area, Energy Conversion Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Bend, Oregon 97702, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Nov 25;12(47):52701-52712. doi: 10.1021/acsami.0c15687. Epub 2020 Nov 12.

Abstract

We present ultralow Ir-loaded (ULL) proton exchange membrane water electrolyzer (PEMWE) cells that can produce enough hydrogen to largely decarbonize the global natural gas, transportation, and electrical storage sectors by 2050, using only half of the annual global Ir production for PEMWE deployment. This represents a significant improvement in PEMWE's global potential, enabled by careful control of the anode catalyst layer (CL), including its mesostructure and catalyst dispersion. Using commercially relevant membranes (Nafion 117), cell materials, electrocatalysts, and fabrication techniques, we achieve at peak a 250× improvement in Ir mass activity over commercial PEMWEs. An optimal Ir loading of 0.011 mg cm operated at an Ir-specific power of ∼100 MW kg at a cell potential of ∼1.66 V versus RHE (85% higher heating value efficiency). We further evaluate the performance limitations within the ULL regime and offer new insights and guidance in CL design relevant to the broader energy conversion field.

摘要

我们展示了超低铱负载(ULL)质子交换膜水电解槽(PEMWE)电池,该电池能够产生足够的氢气,到2050年在很大程度上使全球天然气、交通运输和储能领域脱碳,而用于PEMWE部署的铱仅占全球年产量的一半。这代表了PEMWE全球潜力的显著提升,这是通过对阳极催化剂层(CL)进行仔细控制实现的,包括其介观结构和催化剂分散情况。使用具有商业相关性的膜(Nafion 117)、电池材料、电催化剂和制造技术,我们实现了铱质量活性比商用PEMWE峰值提高250倍。在相对于可逆氢电极(RHE)的电池电势约为1.66 V时,0.011 mg cm的最佳铱负载以约100 MW kg的铱比功率运行(高热值效率提高85%)。我们进一步评估了ULL范围内的性能限制,并在与更广泛的能量转换领域相关的CL设计方面提供了新的见解和指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验