Usama Muhammad, Razzaq Samad, Hättig Christof, Steinmann Stephan N, Exner Kai S
University Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen, Germany.
Cluster of Excellence RESOLV, Bochum, Germany.
Nat Commun. 2025 Jul 3;16(1):6137. doi: 10.1038/s41467-025-61367-z.
Oxygen evolution reaction (OER) is a key process for sustainable energy, although renewable sources require the use of proton exchange membrane electrolyzers, with IrO-based materials being the gold standard under anodic polarization conditions. However, even for the (110) facet of a single-crystalline IrO model electrode, the reaction mechanism is not settled yet due to contradictory reports in literature. In the present manuscript, we disentangle the conflicting results of previous theoretical studies in the density functional theory approximation. We demonstrate that dissimilar reaction mechanisms and limiting steps for the OER over IrO(110) are obtained for different active surface configurations present on the IrO electrode. In contrast to previous studies, we factor Walden-type mechanisms, in which the formation of the product O and adsorption of the reactant HO occur simultaneously, into the analysis of the elementary steps. Combining free-energy diagrams along the reaction coordinate and Bader charge analysis of the active site, we elucidate why mononuclear- or bifunctional-Walden pathways excel the traditional OER mechanisms for the OER over IrO(110). Our computational methodology to identify the reaction mechanism and limiting step of proton-coupled electron transfer steps is widely applicable to electrochemical processes in the field of energy conversion and storage.
析氧反应(OER)是可持续能源的关键过程,尽管可再生能源需要使用质子交换膜电解槽,在阳极极化条件下,基于氧化铱的材料是黄金标准。然而,即使对于单晶氧化铱模型电极的(110)晶面,由于文献中的相互矛盾的报道,反应机理尚未确定。在本论文中,我们在密度泛函理论近似下解开了先前理论研究的相互矛盾的结果。我们证明,对于氧化铱电极上存在的不同活性表面构型,氧化铱(110)上析氧反应的反应机理和限速步骤是不同的。与先前的研究不同,我们将瓦尔登型机理(其中产物O的形成和反应物HO的吸附同时发生)纳入基元步骤的分析中。结合沿反应坐标的自由能图和活性位点的巴德电荷分析,我们阐明了为什么单核或双功能瓦尔登途径优于氧化铱(110)上析氧反应的传统析氧反应机理。我们识别质子耦合电子转移步骤的反应机理和限速步骤的计算方法广泛适用于能量转换和存储领域的电化学过程。