Division of Biological Sciences, the Section of Cell and Developmental Biology, UCSD, La Jolla, California, USA.
Division of Biological Sciences, the Section of Cell and Developmental Biology, UCSD, La Jolla, California, USA.
J Biol Chem. 2021 Jan-Jun;296:100063. doi: 10.1074/jbc.RA120.015910. Epub 2020 Nov 22.
HMG-CoA reductase (HMGR) undergoes feedback-regulated degradation as part of sterol pathway control. Degradation of the yeast HMGR isozyme Hmg2 is controlled by the sterol pathway intermediate GGPP, which causes misfolding of Hmg2, leading to degradation by the HRD pathway; we call this process mallostery. We evaluated the role of the Hmg2 sterol sensing domain (SSD) in mallostery, as well as the involvement of the highly conserved INSIG proteins. We show that the Hmg2 SSD is critical for regulated degradation of Hmg2 and required for mallosteric misfolding of GGPP as studied by in vitro limited proteolysis. The Hmg2 SSD functions independently of conserved yeast INSIG proteins, but its function was modulated by INSIG, thus imposing a second layer of control on Hmg2 regulation. Mutant analyses indicated that SSD-mediated mallostery occurred prior to and independent of HRD-dependent ubiquitination. GGPP-dependent misfolding was still extant but occurred at a much slower rate in the absence of a functional SSD, indicating that the SSD facilitates a physiologically useful rate of GGPP response and implying that the SSD is not a binding site for GGPP. Nonfunctional SSD mutants allowed us to test the importance of Hmg2 quaternary structure in mallostery: a nonresponsive Hmg2 SSD mutant strongly suppressed regulation of a coexpressed, normal Hmg2. Finally, we have found that GGPP-regulated misfolding occurred in detergent-solubilized Hmg2, a feature that will allow next-level analysis of the mechanism of this novel tactic of ligand-regulated misfolding.
羟甲基戊二酰辅酶 A 还原酶(HMGR)作为固醇途径调控的一部分经历反馈调节降解。酵母 HMGR 同工酶 Hmg2 的降解受固醇途径中间产物 GGPP 控制,导致 Hmg2 错误折叠,进而通过 HRD 途径降解;我们称这个过程为别构调控。我们评估了 Hmg2 固醇感应结构域(SSD)在别构调控中的作用,以及高度保守的 INSIG 蛋白的参与。我们表明,Hmg2 SSD 对于 Hmg2 的调节降解至关重要,并且对于 GGPP 的别构错误折叠是必需的,如通过体外有限蛋白酶解研究所示。Hmg2 SSD 独立于保守的酵母 INSIG 蛋白起作用,但受 INSIG 调节,因此对 Hmg2 调节施加了第二层控制。突变分析表明,SSD 介导的别构调控发生在 HRD 依赖性泛素化之前和独立于其之外。在缺乏功能 SSD 的情况下,GGPP 依赖性错误折叠仍然存在,但发生速度要慢得多,这表明 SSD 促进了 GGPP 反应的生理上有用的速度,并暗示 SSD 不是 GGPP 的结合位点。无功能 SSD 突变体使我们能够测试 Hmg2 四级结构在别构调控中的重要性:无反应性 Hmg2 SSD 突变体强烈抑制共表达的正常 Hmg2 的调节。最后,我们发现 GGPP 调节的错误折叠发生在去污剂可溶的 Hmg2 中,这一特性将允许对这种新型配体调节错误折叠策略的机制进行下一层次的分析。