Suppr超能文献

一种基于模型的方法,用于预测在跳跃着陆过程中最小化 ACL 力的神经肌肉控制模式。

A model-based approach to predict neuromuscular control patterns that minimize ACL forces during jump landing.

机构信息

Department of Sport Science, University of Innsbruck, Innsbruck, Austria.

Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA.

出版信息

Comput Methods Biomech Biomed Engin. 2021 May;24(6):612-622. doi: 10.1080/10255842.2020.1842376. Epub 2020 Nov 13.

Abstract

Jump landing is a common situation leading to knee injuries involving the anterior cruciate ligament (ACL) in sports. Although neuromuscular control is considered as a key injury risk factor, there is a lack of knowledge regarding optimum control strategies that reduce ACL forces during jump landing. In the present study, a musculoskeletal model-based computational approach is presented that allows identifying neuromuscular control patterns that minimize ACL forces during jump landing. The approach is demonstrated for a jump landing maneuver in downhill skiing, which is one out of three main injury mechanisms in competitive skiing.

摘要

跳跃落地是导致运动中前交叉韧带(ACL)受伤的常见情况。尽管神经肌肉控制被认为是一个关键的受伤风险因素,但对于可以在跳跃落地时降低 ACL 力的最佳控制策略知之甚少。在本研究中,提出了一种基于肌肉骨骼模型的计算方法,该方法可以确定在跳跃落地时最小化 ACL 力的神经肌肉控制模式。该方法在高山滑雪的跳跃落地动作中进行了演示,这是竞技滑雪的三个主要受伤机制之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验