Suppr超能文献

深度神经网络中面部吸引力的假定比率。

Putative ratios of facial attractiveness in a deep neural network.

作者信息

Tong Song, Liang Xuefeng, Kumada Takatsune, Iwaki Sunao

机构信息

IST, Graduate School of Informatics, Kyoto University, Kyoto, Japan.

School of Artificial Intelligence, Xidian University, Xi'an, PR China.

出版信息

Vision Res. 2021 Jan;178:86-99. doi: 10.1016/j.visres.2020.10.001. Epub 2020 Nov 10.

Abstract

Empirical evidence has shown that there is an ideal arrangement of facial features (ideal ratios) that can optimize the attractiveness of a person's face. These putative ratios define facial attractiveness in terms of spatial relations and provide important rules for measuring the attractiveness of a face. In this paper, we show that a deep neural network (DNN) model can learn putative ratios from face images based only on categorical annotation when no annotated facial features for attractiveness are explicitly given. To this end, we conducted three experiments. In Experiment 1, we trained a DNN model to recognize the attractiveness (female/male × high/low attractiveness) of face in the images using four category-specific neurons (CSNs). In Experiment 2, face-like images were generated by reversing the DNN model (e.g., deconvolution). These images depict the intuitive attributes encoded in CSNs of the four categories of facial attractiveness and reveal certain consistencies with reported evidence on the putative ratios. In Experiment 3, simulated psychophysical experiments on face images with varying putative ratios reveal changes in the activity of the CSNs that are remarkably similar to those of human judgements reported in a previous study. These results show that the trained DNN model can learn putative ratios as key features for the representation of facial attractiveness. This finding advances our understanding of facial attractiveness via DNN-based perspective approaches.

摘要

实证证据表明,面部特征存在一种理想的排列方式(理想比例),能够优化人脸的吸引力。这些假定的比例从空间关系的角度定义了面部吸引力,并为衡量面部吸引力提供了重要规则。在本文中,我们表明,当没有明确给出用于吸引力的标注面部特征时,深度神经网络(DNN)模型仅基于分类标注就能从面部图像中学习假定比例。为此,我们进行了三项实验。在实验1中,我们使用四个类别特定神经元(CSN)训练了一个DNN模型,以识别图像中面部的吸引力(女性/男性×高/低吸引力)。在实验2中,通过反转DNN模型(例如反卷积)生成类人脸图像。这些图像描绘了四类面部吸引力的CSN中编码的直观属性,并揭示了与关于假定比例的报道证据存在一定的一致性。在实验3中,对具有不同假定比例的面部图像进行模拟心理物理学实验,揭示了CSN活动的变化,这些变化与先前一项研究中报道的人类判断变化非常相似。这些结果表明,经过训练的DNN模型可以学习假定比例作为表示面部吸引力的关键特征。这一发现通过基于DNN的视角方法推进了我们对面部吸引力的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验