Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
J Chem Phys. 2020 Nov 14;153(18):185102. doi: 10.1063/5.0022135.
Molecular dynamics simulations are an invaluable tool to characterize the dynamic motions of proteins in atomistic detail. However, the accuracy of models derived from simulations inevitably relies on the quality of the underlying force field. Here, we present an evaluation of current non-polarizable and polarizable force fields (AMBER ff14SB, CHARMM 36m, GROMOS 54A7, and Drude 2013) based on the long-standing biophysical challenge of protein folding. We quantify the thermodynamics and kinetics of the β-hairpin formation using Markov state models of the fast-folding mini-protein CLN025. Furthermore, we study the (partial) folding dynamics of two more complex systems, a villin headpiece variant and a WW domain. Surprisingly, the polarizable force field in our set, Drude 2013, consistently leads to destabilization of the native state, regardless of the secondary structure element present. All non-polarizable force fields, on the other hand, stably characterize the native state ensembles in most cases even when starting from a partially unfolded conformation. Focusing on CLN025, we find that the conformational space captured with AMBER ff14SB and CHARMM 36m is comparable, but the ensembles from CHARMM 36m simulations are clearly shifted toward disordered conformations. While the AMBER ff14SB ensemble overstabilizes the native fold, CHARMM 36m and GROMOS 54A7 ensembles both agree remarkably well with experimental state populations. In addition, GROMOS 54A7 also reproduces experimental folding times most accurately. Our results further indicate an over-stabilization of helical structures with AMBER ff14SB. Nevertheless, the presented investigations strongly imply that reliable (un)folding dynamics of small proteins can be captured in feasible computational time with current additive force fields.
分子动力学模拟是一种非常有价值的工具,可以从原子细节上描述蛋白质的动态运动。然而,从模拟中得出的模型的准确性不可避免地依赖于基础力场的质量。在这里,我们根据蛋白质折叠这一长期存在的生物物理挑战,对当前的非极化和极化力场(AMBER ff14SB、CHARMM 36m、GROMOS 54A7 和 Drude 2013)进行了评估。我们使用快速折叠的小分子蛋白 CLN025 的马尔可夫状态模型来量化β发夹形成的热力学和动力学。此外,我们还研究了两个更复杂系统的(部分)折叠动力学,一个是 Villin 头片段变体,另一个是 WW 结构域。令人惊讶的是,我们所研究的力场中,极化力场 Drude 2013 总是导致天然状态的不稳定,无论存在哪种二级结构元件。另一方面,所有的非极化力场在大多数情况下都能稳定地描述天然状态的集合,即使是从部分展开的构象开始。聚焦于 CLN025,我们发现 AMBER ff14SB 和 CHARMM 36m 捕获的构象空间是可比的,但 CHARMM 36m 模拟的集合明显偏向于无序构象。虽然 AMBER ff14SB 集合过度稳定了天然折叠,但 CHARMM 36m 和 GROMOS 54A7 集合都与实验状态的分布非常吻合。此外,GROMOS 54A7 还能最准确地重现实验折叠时间。我们的结果进一步表明,AMBER ff14SB 过度稳定了螺旋结构。尽管如此,所提出的研究强烈暗示,当前的加和力场可以在可行的计算时间内可靠地捕捉小分子的(未)折叠动力学。