Suppr超能文献

能量、水和蛋白质折叠:基于分子动力学的定量清单,列出了使蛋白质稳定的分子相互作用和力。

Energy, water, and protein folding: A molecular dynamics-based quantitative inventory of molecular interactions and forces that make proteins stable.

机构信息

Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of Zaragoza, Zaragoza, Spain.

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, University of Zaragoza, Zaragoza, Spain.

出版信息

Protein Sci. 2024 Feb;33(2):e4905. doi: 10.1002/pro.4905.

Abstract

Protein folding energetics can be determined experimentally on a case-by-case basis but it is not understood in sufficient detail to provide deep control in protein design. The fundamentals of protein stability have been outlined by calorimetry, protein engineering, and biophysical modeling, but these approaches still face great difficulty in elucidating the specific contributions of the intervening molecules and physical interactions. Recently, we have shown that the enthalpy and heat capacity changes associated to the protein folding reaction can be calculated within experimental error using molecular dynamics simulations of native protein structures and their corresponding unfolded ensembles. Analyzing in depth molecular dynamics simulations of four model proteins (CI2, barnase, SNase, and apoflavodoxin), we dissect here the energy contributions to ΔH (a key component of protein stability) made by the molecular players (polypeptide and solvent molecules) and physical interactions (electrostatic, van der Waals, and bonded) involved. Although the proteins analyzed differ in length, isoelectric point and fold class, their folding energetics is governed by the same quantitative pattern. Relative to the unfolded ensemble, the native conformations are enthalpically stabilized by comparable contributions from protein-protein and solvent-solvent interactions, and almost equally destabilized by interactions between protein and solvent molecules. The native protein surface seems to interact better with water than the unfolded one, but this is outweighed by the unfolded surface being larger. From the perspective of physical interactions, the native conformations are stabilized by van de Waals and Coulomb interactions and destabilized by conformational strain arising from bonded interactions. Also common to the four proteins, the sign of the heat capacity change is set by interactions between protein and solvent molecules or, from the alternative perspective, by Coulomb interactions.

摘要

蛋白质折叠的能量学可以在逐个案例的基础上进行实验确定,但它的细节还不足以提供蛋白质设计的深度控制。通过量热法、蛋白质工程和生物物理建模已经概述了蛋白质稳定性的基础,但这些方法在阐明中间分子和物理相互作用的具体贡献方面仍然面临很大的困难。最近,我们已经表明,可以使用天然蛋白质结构及其相应的展开集合的分子动力学模拟,在实验误差范围内计算与蛋白质折叠反应相关的焓变和热容变化。通过对四个模型蛋白(CI2、 barnase、SNase 和 apoflavodoxin)的分子动力学模拟进行深入分析,我们在这里剖析了分子参与者(多肽和溶剂分子)和物理相互作用(静电、范德华和键合)对ΔH(蛋白质稳定性的关键组成部分)的能量贡献。尽管分析的蛋白质在长度、等电点和折叠类方面有所不同,但它们的折叠能学受到相同的定量模式的控制。与展开集合相比,天然构象在蛋白质-蛋白质和溶剂-溶剂相互作用方面具有相当的焓稳定贡献,并且几乎同样受到蛋白质和溶剂分子之间的相互作用的去稳定。天然蛋白质表面似乎与水的相互作用优于展开的蛋白质表面,但这被展开的蛋白质表面更大所抵消。从物理相互作用的角度来看,天然构象通过范德华和库仑相互作用稳定,并且通过来自键合相互作用的构象应变去稳定。对四个蛋白质来说,热容量变化的符号也由蛋白质和溶剂分子之间的相互作用确定,或者从另一个角度来看,由库仑相互作用确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b2/10804899/8a9fbe9796b6/PRO-33-e4905-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验