Suppr超能文献

通过人工智能为创新治疗应用彻底改变分子设计。

Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence.

机构信息

Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.

Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

出版信息

Molecules. 2024 Sep 29;29(19):4626. doi: 10.3390/molecules29194626.

Abstract

The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.

摘要

近年来,机器学习、人工智能和分子建模方面的进展彻底改变了计算蛋白质工程领域,使人们能够以前所未有的精度和功能设计蛋白质。计算方法现在在增强蛋白质的稳定性、活性和特异性方面发挥着关键作用,可应用于生物技术和医学的多个领域。深度学习、强化学习和迁移学习等技术极大地提高了蛋白质结构预测、结合亲和力优化和酶设计的能力。这些创新通过快速生成靶向文库、减少实验采样以及能够合理设计具有定制特性的蛋白质,简化了蛋白质工程的流程。此外,将计算方法与高通量实验技术相结合,促进了多功能蛋白质和新型治疗药物的发展。然而,在缩小计算预测与实验验证之间的差距以及解决与人工智能驱动的蛋白质设计相关的伦理问题方面,仍然存在挑战。这篇综述全面概述了计算蛋白质工程方法的现状和未来方向,强调了它们在创造下一代生物制剂和推进合成生物学方面的变革潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验