Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
Sci Adv. 2020 Nov 13;6(46). doi: 10.1126/sciadv.aba5933. Print 2020 Nov.
Identifying the systems-level mechanisms that lead to Alzheimer's disease, an unmet need, is an essential step toward the development of therapeutics. In this work, we report that the key disease-causative mechanisms, including dedifferentiation and repression of neuronal identity, are triggered by changes in chromatin topology. Here, we generated human induced pluripotent stem cell (hiPSC)-derived neurons from donor patients with early-onset familial Alzheimer's disease (EOFAD) and used a multiomics approach to mechanistically characterize the modulation of disease-associated gene regulatory programs. We demonstrate that EOFAD neurons dedifferentiate to a precursor-like state with signatures of ectoderm and nonectoderm lineages. RNA-seq, ATAC-seq, and ChIP-seq analysis reveals that transcriptional alterations in the cellular state are orchestrated by changes in histone methylation and chromatin topology. Furthermore, we demonstrate that these mechanisms are observed in EOFAD-patient brains, validating our hiPSC-derived neuron models. The mechanistic endotypes of Alzheimer's disease uncovered here offer key insights for therapeutic interventions.
确定导致阿尔茨海默病(一种未满足的需求)的系统级机制是开发疗法的重要步骤。在这项工作中,我们报告称,关键的疾病致病机制,包括神经元身份的去分化和抑制,是由染色质拓扑结构的变化引发的。在这里,我们从早发性家族性阿尔茨海默病(EOFAD)的供体患者中生成了人诱导多能干细胞(hiPSC)衍生的神经元,并采用多组学方法从机制上对疾病相关基因调控程序的调制进行了特征描述。我们证明 EOFAD 神经元去分化为具有外胚层和非外胚层谱系特征的前体细胞样状态。RNA-seq、ATAC-seq 和 ChIP-seq 分析表明,细胞状态的转录改变是由组蛋白甲基化和染色质拓扑结构的变化协调的。此外,我们证明这些机制在 EOFAD 患者大脑中观察到,验证了我们的 hiPSC 衍生神经元模型。这里揭示的阿尔茨海默病的机制亚型为治疗干预提供了关键的见解。