Suppr超能文献

用于估计人类转录因子活性的资源的基准测试和整合。

Benchmark and integration of resources for the estimation of human transcription factor activities.

机构信息

European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, United Kingdom.

Open Targets, Wellcome Genome Campus, CB10 1SD Cambridge, United Kingdom.

出版信息

Genome Res. 2019 Aug;29(8):1363-1375. doi: 10.1101/gr.240663.118. Epub 2019 Jul 24.

Abstract

The prediction of transcription factor (TF) activities from the gene expression of their targets (i.e., TF regulon) is becoming a widely used approach to characterize the functional status of transcriptional regulatory circuits. Several strategies and data sets have been proposed to link the target genes likely regulated by a TF, each one providing a different level of evidence. The most established ones are (1) manually curated repositories, (2) interactions derived from ChIP-seq binding data, (3) in silico prediction of TF binding on gene promoters, and (4) reverse-engineered regulons from large gene expression data sets. However, it is not known how these different sources of regulons affect the TF activity estimations and, thereby, downstream analysis and interpretation. Here we compared the accuracy and biases of these strategies to define human TF regulons by means of their ability to predict changes in TF activities in three reference benchmark data sets. We assembled a collection of TF-target interactions for 1541 human TFs and evaluated how different molecular and regulatory properties of the TFs, such as the DNA-binding domain, specificities, or mode of interaction with the chromatin, affect the predictions of TF activity. We assessed their coverage and found little overlap on the regulons derived from each strategy and better performance by literature-curated information followed by ChIP-seq data. We provide an integrated resource of all TF-target interactions derived through these strategies, with confidence scores, as a resource for enhanced prediction of TF activities.

摘要

从其靶基因(即 TF 调控子)的基因表达预测转录因子 (TF) 活性正成为一种广泛用于描述转录调控回路功能状态的方法。已经提出了几种策略和数据集来关联可能受 TF 调控的靶基因,每种方法都提供了不同程度的证据。最成熟的方法有:(1) 手动编辑的知识库;(2) 来自 ChIP-seq 结合数据的相互作用;(3) 基于基因启动子的 TF 结合的计算预测;(4) 从大型基因表达数据集反向工程调控子。然而,尚不清楚这些不同的调控子来源如何影响 TF 活性的估计,从而影响下游的分析和解释。在这里,我们通过它们预测三个参考基准数据集中转录因子活性变化的能力,比较了这些策略定义人类 TF 调控子的准确性和偏差。我们为 1541 个人类 TF 组装了一个 TF-靶相互作用集合,并评估了 TF 的分子和调控特性(例如 DNA 结合域、特异性或与染色质相互作用的模式)如何影响 TF 活性的预测。我们评估了它们的覆盖范围,发现从每种策略得出的调控子之间几乎没有重叠,而文献编辑信息和 ChIP-seq 数据的预测性能更好。我们提供了通过这些策略得出的所有 TF-靶相互作用的综合资源,包括置信度评分,作为增强 TF 活性预测的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cbd/6673718/cef125bda294/1363f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验