Suppr超能文献

一种经实验验证的弹簧驱动自动注射器的动力学模型。

An experimentally validated dynamic model for spring-driven autoinjectors.

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States.

Eli Lilly and Company, Indianapolis, IN 46225, United States.

出版信息

Int J Pharm. 2021 Feb 1;594:120008. doi: 10.1016/j.ijpharm.2020.120008. Epub 2020 Nov 13.

Abstract

This study focuses on developing a predictive dynamic model for spring-driven autoinjectors. The values of unknown physical parameters, such as the heat convection coefficient and the friction force between the plunger and the syringe barrel, are obtained by fitting the experimentally measured displacements of the plunger and the syringe barrel. The predicted kinematics of the components, such as the displacement and velocity of the syringe barrel, agree well with the experiments with a l-norm error smaller than 10%. The predictions of the needle displacement at the start of drug delivery agree with the experimental measurements with a l-norm error of 20%. The maximum air gap pressure and temperature decrease with the initial air gap height but increase with the elasticity and viscosity of the plunger and the mechanical stop. The proposed experimentally validated dynamic model can be effectively used for device design optimization as it is not computationally demanding.

摘要

本研究致力于开发一种用于弹簧驱动自动注射器的预测动力学模型。通过拟合实验测量得到的柱塞和注射器筒的位移,得到了未知物理参数(如热对流系数和柱塞与注射器筒之间的摩擦力)的值。组件的预测运动学,如注射器筒的位移和速度,与实验结果非常吻合,l-范数误差小于 10%。在药物输送开始时的针位移预测与实验测量结果的 l-范数误差为 20%。最大气隙压力和温度随初始气隙高度的增加而降低,但随柱塞和机械止动装置的弹性和粘性的增加而增加。所提出的经过实验验证的动力学模型可以有效地用于设备设计优化,因为它的计算量不大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验