Suppr超能文献

利用机器学习的无线可穿戴传感器来研究呼吸行为的个体差异。

Machine-learning enabled wireless wearable sensors to study individuality of respiratory behaviors.

作者信息

Chen Ang, Zhang Jianwei, Zhao Liangkai, Rhoades Rachel Diane, Kim Dong-Yun, Wu Ning, Liang Jianming, Chae Junseok

机构信息

School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA.

School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA.

出版信息

Biosens Bioelectron. 2021 Feb 1;173:112799. doi: 10.1016/j.bios.2020.112799. Epub 2020 Nov 6.

Abstract

Respiratory behaviors provide useful measures of lung health. The current methods have limited capabilities of continuous characterization of respiratory behaviors, often required to assess respiratory disorders and diseases. This work presents a system equipped with a machine learning algorithm, capable of continuously monitoring respiratory behaviors. The system, consisting of two wireless wearable sensors, accurately extracts and classifies the features of respiratory behaviors of subjects within various postures, wirelessly transmitting the temporal respiratory behaviors to a laptop. The sensors were attached on the midway of the xiphoid process and the costal margin, and 1 cm above the umbilicus, respectively. The wireless wearable sensor, consisting of ultrasound emitter, ultrasound receiver, data acquisition and wireless transmitter, has a small footprint and light weight. The sensors correlate the mechanical strain at wearing sites to lung volume by measuring the local circumference changes of the chest and abdominal walls simultaneously. Eleven subjects were recruited to evaluate the wireless wearable sensors. Three different random forest classifiers, including generic, individual, and weighted-adaptive classifiers, were used to process the wireless data of the subjects at four different postures. The results demonstrate the respiratory behaviors are individual- and posture-dependent. The generic classifier merely reaches the accuracy of classifying postures of 21.9 ± 1.7% while individual and weighted-adaptive classifiers mark substantially high, up to 98.9 ± 0.6% and 98.8 ± 0.6%, respectively. The accurate monitoring of respiratory behaviors can track the progression of respiratory disorders and diseases, including chronic respiratory obstructive disease (COPD), asthma, apnea, and others for timely and objective approaches for control.

摘要

呼吸行为为评估肺部健康提供了有用的指标。当前的方法在持续表征呼吸行为方面能力有限,而这对于评估呼吸系统疾病往往是必需的。本文介绍了一种配备机器学习算法的系统,能够持续监测呼吸行为。该系统由两个无线可穿戴传感器组成,可准确提取和分类不同姿势下受试者呼吸行为的特征,并将呼吸行为的时间数据无线传输至笔记本电脑。传感器分别附着在剑突与肋缘的中点以及脐上1厘米处。这种无线可穿戴传感器由超声发射器、超声接收器、数据采集器和无线发射器组成,具有体积小、重量轻的特点。传感器通过同时测量胸壁和腹壁的局部周长变化,将佩戴部位的机械应变与肺容积相关联。招募了11名受试者来评估这种无线可穿戴传感器。使用了三种不同的随机森林分类器,包括通用分类器、个体分类器和加权自适应分类器,来处理受试者在四种不同姿势下的无线数据。结果表明呼吸行为因个体和姿势而异。通用分类器对姿势分类的准确率仅为21.9±1.7%,而个体分类器和加权自适应分类器的准确率则显著较高,分别高达98.9±0.6%和98.8±0.6%。对呼吸行为的准确监测可以追踪呼吸系统疾病的进展,包括慢性阻塞性肺疾病(COPD)、哮喘、呼吸暂停等,以便采取及时、客观的控制方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验