Suppr超能文献

基于光流帧滤波和Transformer辅助深度网络的呼气聚焦热图像分割

Exhale-Focused Thermal Image Segmentation Using Optical Flow-Based Frame Filtering and Transformer-Aided Deep Networks.

作者信息

Lee Do-Kyeong, Shin Jae-Sung, Choi Jae-Sung, Choi Min-Hyung, Hong Min

机构信息

Department of Software Convergence, Soonchunhyang University, Asan 31538, Republic of Korea.

Department of Internal Medicine, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea.

出版信息

Bioengineering (Basel). 2025 May 18;12(5):542. doi: 10.3390/bioengineering12050542.

Abstract

Since the COVID-19 pandemic, interest in non-contact diagnostic technologies has grown, leading to increased research into remote biosignal monitoring. The respiratory rate, widely used in previous studies, offers limited insight into pulmonary volume. To redress this, we propose a thermal imaging-based framework for respiratory segmentation aimed at estimating non-invasive pulmonary function. The proposed method uses an optical flow magnitude-based thresholding technique to automatically extract exhalation frames and segment them into frame sequences. A TransUNet-based network, combining a Convolutional Neural Network (CNN) encoder-decoder architecture with a Transformer module in the bottleneck, is trained on these sequences. The model's Accuracy, Precision, Recall, IoU, Dice, and F1-score were 0.9832, 0.9833, 0.9830, 0.9651, 0.9822, and 0.9831, respectively, which results demonstrate high segmentation performance. The method enables the respiratory volume to be estimated by detecting exhalation behavior, suggesting its potential as a non-contact tool to monitor pulmonary function and estimate lung volume. Furthermore, research on thermal imaging-based respiratory volume analysis remains limited. This study expands upon conventional respiratory rate-based approaches to provide a new direction for respiratory analysis using vision-based techniques.

摘要

自新冠疫情以来,人们对非接触式诊断技术的兴趣日益浓厚,这导致对远程生物信号监测的研究不断增加。呼吸频率在以往研究中被广泛使用,但对肺容量的洞察有限。为了解决这一问题,我们提出了一种基于热成像的呼吸分割框架,旨在估计无创肺功能。所提出的方法使用基于光流大小的阈值技术自动提取呼气帧并将其分割成帧序列。一个基于TransUNet的网络,将卷积神经网络(CNN)编码器-解码器架构与瓶颈处的Transformer模块相结合,在这些序列上进行训练。该模型的准确率、精确率、召回率、交并比、骰子系数和F1分数分别为0.9832、0.9833、0.9830、0.9651、0.9822和0.9831,这些结果表明该模型具有很高的分割性能。该方法能够通过检测呼气行为来估计呼吸量,表明其作为监测肺功能和估计肺容量的非接触工具的潜力。此外,基于热成像的呼吸量分析研究仍然有限。本研究扩展了传统的基于呼吸频率的方法,为使用基于视觉的技术进行呼吸分析提供了新的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46a2/12108674/a3b41a3a81fd/bioengineering-12-00542-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验