Darienzo Richard E, Chen Olivia, Sullivan Maurinne, Mironava Tatsiana, Tannenbaum Rina
Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
Mater Chem Phys. 2020 Jan 15;240. doi: 10.1016/j.matchemphys.2019.122143. Epub 2019 Sep 18.
Quasi-fractal gold nanoparticles can be synthesized via a modified and temperature controlled procedure initially used for the synthesis of star-like gold nanoparticles. The surface features of nanoparticles lead to improved enhancement of Raman scattering intensity of analyte molecules due to the increased number of sharp surface features possessing numerous localized surface plasmon resonances (LSPR). The LSPR is affected by the size and shape of surface features as well as inter-nanoparticle interactions, as these affect the oscillation modes of electrons on the nanoparticle surfaces. The effect of the particle morphologies on the localized surface plasmon resonance (LSPR) and on the surface-enhancing capabilities of these nanoparticles is explored by comparing different nanoparticle morphologies and concentrations. We show that in a fixed nanoparticle concentration regime, quasi-fractal gold nanoparticles (gold nanocaltrop) provide the highest level of surface enhancement, whereas spherical nanoparticles provide the largest enhancement in a fixed gold concentration regime. The presence of highly branched features enables these nanoparticles to couple with a laser wavelength, despite having no strong absorption band and hence no single surface plasmon resonance. This cumulative LSPR may allow these nanoparticles to be used in a variety of applications in which laser wavelength flexibility is beneficial, such as in medical imaging applications where fluorescence at short laser wavelengths may be coupled with non-fluorescing long laser wavelengths for molecular sensing.
准分形金纳米颗粒可以通过一种最初用于合成星形金纳米颗粒的经过改进的、温度可控的方法来合成。由于具有大量局域表面等离子体共振(LSPR)的尖锐表面特征数量增加,纳米颗粒的表面特征导致分析物分子的拉曼散射强度增强。LSPR受表面特征的尺寸和形状以及纳米颗粒间相互作用的影响,因为这些会影响纳米颗粒表面电子的振荡模式。通过比较不同的纳米颗粒形态和浓度,研究了颗粒形态对局域表面等离子体共振(LSPR)以及这些纳米颗粒的表面增强能力的影响。我们表明,在固定的纳米颗粒浓度范围内,准分形金纳米颗粒(金纳米四分体)提供最高水平的表面增强,而球形纳米颗粒在固定的金浓度范围内提供最大的增强。高度分支特征的存在使这些纳米颗粒能够与激光波长耦合,尽管没有强吸收带,因此也没有单一的表面等离子体共振。这种累积的LSPR可能使这些纳米颗粒可用于各种激光波长灵活性有益的应用中,例如在医学成像应用中,短激光波长的荧光可以与非荧光的长激光波长耦合用于分子传感。