Suppr超能文献

构建可塑性表型以分类视皮层经验依赖性发育的入门指南。

A Primer on Constructing Plasticity Phenotypes to Classify Experience-Dependent Development of the Visual Cortex.

作者信息

Balsor Justin L, Ahuja Dezi, Jones David G, Murphy Kathryn M

机构信息

McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, ON, Canada.

Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, ON, Canada.

出版信息

Front Cell Neurosci. 2020 Aug 27;14:245. doi: 10.3389/fncel.2020.00245. eCollection 2020.

Abstract

Many neural mechanisms regulate experience-dependent plasticity in the visual cortex (V1), and new techniques for quantifying large numbers of proteins or genes are transforming how plasticity is studied into the era of big data. With those large data sets comes the challenge of extracting biologically meaningful results about visual plasticity from data-driven analytical methods designed for high-dimensional data. In other areas of neuroscience, high-information content methodologies are revealing more subtle aspects of neural development and individual variations that give rise to a richer picture of brain disorders. We have developed an approach for studying V1 plasticity that takes advantage of the known functions of many synaptic proteins for regulating visual plasticity. We use that knowledge to rebrand protein measurements into plasticity features and combine those into a plasticity phenotype. Here, we provide a primer for analyzing experience-dependent plasticity in V1 using example R code to identify high-dimensional changes in a group of proteins. We describe using PCA to classify high-dimensional plasticity features and use them to construct a plasticity phenotype. In the examples, we show how to use this analytical framework to study and compare experience-dependent development and plasticity of V1 and apply the plasticity phenotype to translational research questions. We include an R package "PlasticityPhenotypes" that aggregates the coding packages and custom code written in RStudio to construct and analyze plasticity phenotypes.

摘要

许多神经机制调节视觉皮层(V1)中依赖经验的可塑性,而用于量化大量蛋白质或基因的新技术正在将可塑性的研究方式转变为大数据时代。随着这些大数据集的出现,从为高维数据设计的数据驱动分析方法中提取有关视觉可塑性的具有生物学意义的结果面临着挑战。在神经科学的其他领域,高信息含量的方法正在揭示神经发育和个体差异的更细微方面,从而形成一幅关于脑部疾病的更丰富图景。我们开发了一种研究V1可塑性的方法,该方法利用许多突触蛋白调节视觉可塑性的已知功能。我们利用这些知识将蛋白质测量重新定义为可塑性特征,并将它们组合成可塑性表型。在这里,我们提供一个使用示例R代码分析V1中依赖经验的可塑性的入门指南,以识别一组蛋白质中的高维变化。我们描述了如何使用主成分分析(PCA)对高维可塑性特征进行分类,并使用它们构建可塑性表型。在示例中,我们展示了如何使用这个分析框架来研究和比较V1依赖经验的发育和可塑性,并将可塑性表型应用于转化研究问题。我们提供了一个R包“PlasticityPhenotypes”,它汇总了在RStudio中编写的编码包和自定义代码,用于构建和分析可塑性表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca0/7482673/c2313f04bb00/fncel-14-00245-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验