Hensch Takao K, Quinlan Elizabeth M
FM Kirby Neurobiology Center,Boston Children's Hospital,Harvard Medical School,Boston,Massachusetts.
Neuroscience and Cognitive Science Program,Department of Biology,University of Maryland,College Park,Maryland.
Vis Neurosci. 2018 Jan;35:E014. doi: 10.1017/S0952523817000219.
The shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular 'brakes'. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.
单眼剥夺诱导的双眼神经元眼优势(OD)转变是局限于出生后关键期的突触可塑性的典型模型。这种可塑性的发育限制不仅赋予成熟视觉皮层回路稳定性,还阻碍了在早期窗口期之后从弱视中恢复的能力。利用分子、遗传和成像工具的小鼠模型取得的进展,开始揭示控制初级视觉皮层(V1)可塑性关键期开始和结束的回路、细胞和分子机制。新出现的证据表明,使幼年动物具有可塑性的机制并非简单地随着年龄增长而丧失,而是可塑性受到分子“刹车”发育上调的积极限制。解除这些“刹车”可增强成年视觉皮层的可塑性,并可用于促进弱视恢复。通过实验操作重新激活可塑性,修正了强大的OD可塑性仅限于出生后早期发育的观点。在这里,我们讨论了对关键期起始和终止神经生物学的最新见解,以及我们对这些过程日益深入的机制理解如何能够用于改善成人弱视的临床治疗。