文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Bioinformatics Analysis Discovers Microtubular Tubulin Beta 6 Class V (TUBB6) as a Potential Therapeutic Target in Glioblastoma.

作者信息

Jiang Lan, Zhu Xiaolong, Yang Hui, Chen Tianbing, Lv Kun

机构信息

Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.

Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China.

出版信息

Front Genet. 2020 Sep 18;11:566579. doi: 10.3389/fgene.2020.566579. eCollection 2020.


DOI:10.3389/fgene.2020.566579
PMID:33193654
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7531581/
Abstract

Glioblastoma (GBM) has long been a major clinical research challenge to scientists. The pivotal role of the mitochondria related gene family in the promotion of GBM tumorigenesis is not clear. We detected that microtubular tubulin beta 6 class V (TUBB6) was one of 33 differentially expressed mitochondrial-focused genes (DEMFGs) in GBM, and considered that TUBB6 is a potential therapeutic target in GBM. TUBB6 was vital for GBM and marked as the key prognostic gene in primary GBM. Mutations of TUBB6 in GBM were rare. Only four TUBB6 co-expressed hub genes (ANXA2, S100A11, FLNA, and MSN) exhibited poorer overall survival rates in higher expression groups (-value < 0.05). We have confirmed the up-regulation of TUBB6 and its partners, ANXA2 and S100A11 in GBM and validated their importance as prognostic factors in primary GBM. TUBB6 was significantly correlated with stromal score in GBM samples (-value = 6.99E-04). This study aimed to assess the importance of novel hub genes by analyzing the expression, potential function and prognostic impact of TUBB6 in human primary GBM cancer.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/816ae56fe89f/fgene-11-566579-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/7717d118245a/fgene-11-566579-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/cb60800ec816/fgene-11-566579-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/f9af42d8c2bb/fgene-11-566579-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/29ab362bf791/fgene-11-566579-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/5e8439186bf2/fgene-11-566579-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/b2fc0145cad3/fgene-11-566579-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/324ca60ba46d/fgene-11-566579-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/c4b2c1fd765e/fgene-11-566579-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/0a18350dd809/fgene-11-566579-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/055131fc46e5/fgene-11-566579-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/816ae56fe89f/fgene-11-566579-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/7717d118245a/fgene-11-566579-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/cb60800ec816/fgene-11-566579-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/f9af42d8c2bb/fgene-11-566579-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/29ab362bf791/fgene-11-566579-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/5e8439186bf2/fgene-11-566579-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/b2fc0145cad3/fgene-11-566579-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/324ca60ba46d/fgene-11-566579-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/c4b2c1fd765e/fgene-11-566579-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/0a18350dd809/fgene-11-566579-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/055131fc46e5/fgene-11-566579-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd3/7531581/816ae56fe89f/fgene-11-566579-g011.jpg

相似文献

[1]
Bioinformatics Analysis Discovers Microtubular Tubulin Beta 6 Class V (TUBB6) as a Potential Therapeutic Target in Glioblastoma.

Front Genet. 2020-9-18

[2]
The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression.

J Exp Clin Cancer Res. 2019-3-21

[3]
Gender influences the class III and V β-tubulin ability to predict poor outcome in colorectal cancer.

Clin Cancer Res. 2012-3-21

[4]
Persistent upregulation of the β-tubulin tubb6, linked to muscle regeneration, is a source of microtubule disorganization in dystrophic muscle.

Hum Mol Genet. 2019-4-1

[5]
Quantitative proteomics identifies TUBB6 as a biomarker of muscle-invasion and poor prognosis in bladder cancer.

Int J Cancer. 2023-1-15

[6]
Annexin 2A sustains glioblastoma cell dissemination and proliferation.

Oncotarget. 2016-8-23

[7]
Identification of Crucial Candidate Genes and Pathways in Glioblastoma Multiform by Bioinformatics Analysis.

Biomolecules. 2019-5-24

[8]
Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.

Mol Med Rep. 2018-8-21

[9]
Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression.

Oncol Lett. 2020-8

[10]
Implant volume as a prognostic variable in brachytherapy decision-making for malignant gliomas stratified by the RTOG recursive partitioning analysis.

Int J Radiat Oncol Biol Phys. 2001-11-15

引用本文的文献

[1]
Explainable Machine Learning Models for Glioma Subtype Classification and Survival Prediction.

Cancers (Basel). 2025-8-9

[2]
Transcription factor NFKB1 mediates TUBB6 to promote the proliferation and suppress apoptosis in glioma via Wnt/β-catenin signaling pathway.

Discov Oncol. 2025-4-1

[3]
Annexin A's Life in Pan-Cancer: Especially in Glioma Immune Cells.

Neuromolecular Med. 2025-2-26

[4]
Therapeutic Potential of TUBB6 Inhibition for Hematoma Reduction, Microtubule Stabilization, and Neurological Recovery in an In Vivo Model of Intracerebral Hemorrhage.

Neuromolecular Med. 2025-2-20

[5]
Identification of novel Kv1.3 channel-interacting proteins using proximity labelling in T-cells.

bioRxiv. 2025-1-18

[6]
Cross-talk of Three Molecular Subtypes of Telomere Maintenance Defines Clinical Characteristics and Tumor Microenvironment in Gastric Cancer.

J Cancer. 2024-4-15

[7]
Systematic transcriptome-wide meta-analysis across endocrine disrupting chemicals reveals shared and unique liver pathways, gene networks, and disease associations.

Environ Int. 2024-1

[8]
Prediction of anti-microtubular target proteins of tubulins and their interacting proteins using Gene Ontology tools.

J Genet Eng Biotechnol. 2023-7-19

[9]
Construction and validation of a prognosis signature based on the immune microenvironment in gastric cancer.

Front Surg. 2023-3-31

[10]
Bioinformatics Identification of TUBB as Potential Prognostic Biomarker for Worse Prognosis in ERα-Positive and Better Prognosis in ERα-Negative Breast Cancer.

Diagnostics (Basel). 2022-8-26

本文引用的文献

[1]
Gene regulation network analysis reveals core genes associated with survival in glioblastoma multiforme.

J Cell Mol Med. 2020-9

[2]
Identification of HMG-box family establishes the significance of SOX6 in the malignant progression of glioblastoma.

Aging (Albany NY). 2020-5-10

[3]
Ancient genes can be served as pan-cancer diagnostic and prognostic biomarkers.

J Cell Mol Med. 2020-6

[4]
Establishment and Characterisation of Heterotopic Patient-Derived Xenografts for Glioblastoma.

Cancers (Basel). 2020-4-3

[5]
Development and Validation of a Prognostic Nomogram for Gastric Cancer Based on DNA Methylation-Driven Differentially Expressed Genes.

Int J Biol Sci. 2020

[6]
Pan-cancer mapping of differential protein-protein interactions.

Sci Rep. 2020-2-24

[7]
Comprehensive molecular characterization of mitochondrial genomes in human cancers.

Nat Genet. 2020-2-5

[8]
Nanocarrier-based drug combination therapy for glioblastoma.

Theranostics. 2020

[9]
Cooperative Blockade of PKCα and JAK2 Drives Apoptosis in Glioblastoma.

Cancer Res. 2019-12-5

[10]
Cortical tethering of mitochondria by the anchor protein Mcp5 enables uniparental inheritance.

J Cell Biol. 2019-10-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索