Suppr超能文献

面部吸引力的无监督推理方法。

Unsupervised inference approach to facial attractiveness.

作者信息

Ibanez-Berganza Miguel, Amico Ambra, Lancia Gian Luca, Maggiore Federico, Monechi Bernardo, Loreto Vittorio

机构信息

Department of Physics, University of Roma "La Sapienza", Rome, Italy.

Chair of Systems Design, Swiss Federal Institute of Technology, Zurich, Switzerland.

出版信息

PeerJ. 2020 Oct 28;8:e10210. doi: 10.7717/peerj.10210. eCollection 2020.

Abstract

The perception of facial attractiveness is a complex phenomenon which depends on how the observer perceives not only individual facial features, but also their mutual influence and interplay. In the machine learning community, this problem is typically tackled as a problem of regression of the subject-averaged rating assigned to natural faces. However, it has been conjectured that this approach does not capture the complexity of the phenomenon. It has recently been shown that different human subjects can navigate the face-space and "sculpt" their preferred modification of a reference facial portrait. Here we present an unsupervised inference study of the set of sculpted facial vectors in such experiments. We first infer minimal, interpretable and accurate probabilistic models (through Maximum Entropy and artificial neural networks) of the preferred facial variations, that encode the inter-subject variance. The application of such generative models to the supervised classification of the gender of the subject that sculpted the face reveals that it may be predicted with astonishingly high accuracy. We observe that the classification accuracy improves by increasing the order of the non-linear effective interaction. This suggests that the cognitive mechanisms related to facial discrimination in the brain do not involve the positions of single facial landmarks only, but mainly the mutual influence of couples, and even triplets and quadruplets of landmarks. Furthermore, the high prediction accuracy of the subjects' gender suggests that much relevant information regarding the subjects may influence (and be elicited from) their facial preference criteria, in agreement with the multiple motive theory of attractiveness proposed in previous works.

摘要

对面部吸引力的感知是一种复杂的现象,它不仅取决于观察者如何感知个体面部特征,还取决于这些特征之间的相互影响和相互作用。在机器学习领域,这个问题通常被当作是对自然面孔的主体平均评分回归问题来处理。然而,有人推测这种方法没有捕捉到该现象的复杂性。最近有研究表明,不同的人类受试者能够在面部空间中导航,并“塑造”他们对参考面部肖像的偏好修改。在此,我们展示了对此类实验中塑造的面部向量集的无监督推理研究。我们首先推断出首选面部变化的最小、可解释且准确的概率模型(通过最大熵和人工神经网络),这些模型编码了受试者间的差异。将此类生成模型应用于对面部塑造者性别的监督分类,结果显示其预测准确率高得出奇。我们观察到,通过增加非线性有效相互作用的阶数,分类准确率会提高。这表明大脑中与面部辨别相关的认知机制不仅涉及单个面部标志点的位置,还主要涉及标志点对之间、甚至三元组和四元组标志点之间的相互影响。此外,受试者性别的高预测准确率表明,许多与受试者相关的信息可能会影响(并从)他们的面部偏好标准中得出,这与先前研究中提出的吸引力多重动机理论相一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dacc/7602690/9ab450069f52/peerj-08-10210-g001.jpg

相似文献

1
Unsupervised inference approach to facial attractiveness.
PeerJ. 2020 Oct 28;8:e10210. doi: 10.7717/peerj.10210. eCollection 2020.
2
Subjectivity and complexity of facial attractiveness.
Sci Rep. 2019 Jun 10;9(1):8364. doi: 10.1038/s41598-019-44655-9.
3
A novel facial attractiveness evaluation system based on face shape, facial structure features and skin.
Cogn Neurodyn. 2020 Oct;14(5):643-656. doi: 10.1007/s11571-020-09591-9. Epub 2020 Jun 4.
4
Gender Biases in the Accuracy of Facial Judgments: Facial Attractiveness and Perceived Socioeconomic Status.
Front Psychol. 2022 May 31;13:884888. doi: 10.3389/fpsyg.2022.884888. eCollection 2022.
6
Changing perception: facial reanimation surgery improves attractiveness and decreases negative facial perception.
Laryngoscope. 2014 Jan;124(1):84-90. doi: 10.1002/lary.24262. Epub 2013 Jun 26.
7
I See Faces! A Review on Face Perception and Attractiveness with a Prosthodontic Peek at Cognitive Psychology.
J Prosthodont. 2022 Aug;31(7):562-570. doi: 10.1111/jopr.13467. Epub 2021 Dec 28.
8
Morphological quantitative criteria and aesthetic evaluation of eight female Han face types.
Aesthetic Plast Surg. 2013 Apr;37(2):445-53. doi: 10.1007/s00266-013-0081-9. Epub 2013 Feb 13.
9
Contrast Effect of Facial Attractiveness in Groups.
Front Psychol. 2020 Sep 15;11:2258. doi: 10.3389/fpsyg.2020.02258. eCollection 2020.
10
Comparisons make faces more attractive: An ERP study.
Brain Behav. 2022 Jun;12(6):e2561. doi: 10.1002/brb3.2561. Epub 2022 May 12.

引用本文的文献

1
Information-theoretical analysis of the neural code for decoupled face representation.
PLoS One. 2024 Jan 26;19(1):e0295054. doi: 10.1371/journal.pone.0295054. eCollection 2024.
2
A maximum entropy approach for the modelling of car-sharing parking dynamics.
Sci Rep. 2023 Feb 21;13(1):2993. doi: 10.1038/s41598-023-30134-9.
3
Subjectivity and complexity of facial attractiveness.
Sci Rep. 2019 Jun 10;9(1):8364. doi: 10.1038/s41598-019-44655-9.

本文引用的文献

2
Hamiltonian modelling of macro-economic urban dynamics.
R Soc Open Sci. 2020 Sep 23;7(9):200667. doi: 10.1098/rsos.200667. eCollection 2020 Sep.
3
The eye wants what the heart wants: Female face preferences are related to partner personality preferences.
J Exp Psychol Hum Percept Perform. 2020 Nov;46(11):1328-1343. doi: 10.1037/xhp0000858. Epub 2020 Aug 6.
4
Contributions of shape and reflectance information to social judgments from faces.
Vision Res. 2019 Dec;165:131-142. doi: 10.1016/j.visres.2019.10.010. Epub 2019 Nov 14.
5
Subjectivity and complexity of facial attractiveness.
Sci Rep. 2019 Jun 10;9(1):8364. doi: 10.1038/s41598-019-44655-9.
6
An introduction to the maximum entropy approach and its application to inference problems in biology.
Heliyon. 2018 Apr 13;4(4):e00596. doi: 10.1016/j.heliyon.2018.e00596. eCollection 2018 Apr.
7
The Code for Facial Identity in the Primate Brain.
Cell. 2017 Jun 1;169(6):1013-1028.e14. doi: 10.1016/j.cell.2017.05.011.
8
Data-driven approaches in the investigation of social perception.
Philos Trans R Soc Lond B Biol Sci. 2016 May 5;371(1693). doi: 10.1098/rstb.2015.0367.
9
Changing the personality of a face: Perceived Big Two and Big Five personality factors modeled in real photographs.
J Pers Soc Psychol. 2016 Apr;110(4):609-24. doi: 10.1037/pspp0000064. Epub 2015 Sep 7.
10
Facial attractiveness.
Wiley Interdiscip Rev Cogn Sci. 2014 Nov;5(6):621-634. doi: 10.1002/wcs.1316. Epub 2014 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验