Suppr超能文献

将比较微生物学中的免疫本能和母体智慧应用于新型冠状病毒肺炎

Applying Immune Instincts and Maternal Intelligence from Comparative Microbiology to COVID-19.

作者信息

Cimolai Nevio

机构信息

Faculty of Medicine, The University of British Columbia, Vancouver, BC Canada.

Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC V6H3V4 Canada.

出版信息

SN Compr Clin Med. 2020;2(12):2670-2683. doi: 10.1007/s42399-020-00634-0. Epub 2020 Nov 9.

Abstract

New data specific to COVID-19 are emerging quickly on key issues of immunity and prevention, but past research in coronavirology and for other human pathogens (e.g., ) has been available and of great relevance. Considerable study of endemic human coronaviruses has shown that neutralizing antibody correlates with protection, but effective clinical protection is variable for subsequent virus exposure. Animal coronavirus research has emphasized the importance of local mucosal protection (especially IgA) and systemic responses. Animal model and human post-infection studies for SARS-CoV and MERS-CoV are largely corroborative. Whether for passive therapeutic strategies or vaccination, these findings provide a template for COVID-19. Many approaches to vaccination have emerged, and there may be more than one vaccine that will be applied, but individualized obstacles and concerns for administration, efficacy, and safety are inevitable. Regardless of safeguards or promises that may be understood from laboratory or vertebrate experiments, observations from large-scale human trials will ultimately prove to shape the medical future. Focus on common mucosal immunity can be underrated, and equally or more, focus on lactogenic immunity may be underestimated. In understanding both passive immunity and protection, the body is already primed to educate us with decisions of what constitutes protection and harm. This review provides key insights that drive hypotheses into how the instinct of immunity and the intelligence of the maternal component of the common mucosal immune system has already guided us and may continue to do so effectively into a bright and safe future.

摘要

关于新冠病毒(COVID-19)免疫力和预防关键问题的新数据正在迅速涌现,但过去在冠状病毒学以及其他人类病原体(例如……)方面的研究已经存在且具有重要意义。对地方性人类冠状病毒的大量研究表明,中和抗体与保护作用相关,但后续病毒暴露时有效的临床保护作用存在差异。动物冠状病毒研究强调了局部黏膜保护(尤其是IgA)和全身反应的重要性。针对严重急性呼吸综合征冠状病毒(SARS-CoV)和中东呼吸综合征冠状病毒(MERS-CoV)的动物模型和人类感染后研究在很大程度上相互印证。无论是对于被动治疗策略还是疫苗接种,这些发现都为新冠病毒(COVID-19)提供了一个模板。已经出现了许多疫苗接种方法,可能会应用不止一种疫苗,但在给药、疗效和安全性方面不可避免地会存在个体化的障碍和担忧。无论从实验室或脊椎动物实验中可以理解到哪些保障措施或承诺,大规模人体试验的观察结果最终将塑造医学的未来。对共同黏膜免疫的关注可能被低估,而对泌乳相关免疫的关注同样或更可能被低估。在理解被动免疫和保护作用时,身体已经准备好通过判断什么构成保护和伤害来教导我们。本综述提供了关键见解,推动了关于免疫本能以及共同黏膜免疫系统母体成分的智慧如何已经引导我们并可能继续有效地引导我们走向光明安全未来的假设。

相似文献

1
Applying Immune Instincts and Maternal Intelligence from Comparative Microbiology to COVID-19.
SN Compr Clin Med. 2020;2(12):2670-2683. doi: 10.1007/s42399-020-00634-0. Epub 2020 Nov 9.
2
The British variant of the new coronavirus-19 (Sars-Cov-2) should not create a vaccine problem.
J Biol Regul Homeost Agents. 2021 Jan-Feb;35(1):1-4. doi: 10.23812/21-3-E.
5
The Rapid Development and Early Success of Covid 19 Vaccines Have Raised Hopes for Accelerating the Cancer Treatment Mechanism.
Arch Razi Inst. 2021 Mar;76(1):1-6. doi: 10.22092/ari.2021.353761.1612. Epub 2021 Mar 1.
6
The durability of immunity against reinfection by SARS-CoV-2: a comparative evolutionary study.
Lancet Microbe. 2021 Dec;2(12):e666-e675. doi: 10.1016/S2666-5247(21)00219-6. Epub 2021 Oct 1.
7
[Immunity to SARS CoV-2 - strengths and weaknesses].
Dtsch Med Wochenschr. 2021 Dec;146(24-25):1624-1635. doi: 10.1055/a-1582-2327. Epub 2021 Dec 8.
8
Evolution of Early SARS-CoV-2 and Cross-Coronavirus Immunity.
mSphere. 2020 Sep 2;5(5):e00622-20. doi: 10.1128/mSphere.00622-20.
9
Mucosal immunity to severe acute respiratory syndrome coronavirus 2 infection.
Curr Opin Infect Dis. 2021 Jun 1;34(3):181-186. doi: 10.1097/QCO.0000000000000724.

引用本文的文献

1
Bibliometric Analysis of the Publications on Middle East Respiratory Syndrome Coronavirus Published Between 2012-2022.
Infect Dis Clin Microbiol. 2023 Sep 30;5(3):221-230. doi: 10.36519/idcm.2023.244. eCollection 2023 Sep.
2
COVID-19 among infants: key clinical features and remaining controversies.
Clin Exp Pediatr. 2024 Jan;67(1):1-16. doi: 10.3345/cep.2023.00794. Epub 2023 Nov 27.
3
Immunophenotyping of SARS-CoV-2 and vaccine design.
Vaccine. 2022 Jun 26;40(30):3985-3986. doi: 10.1016/j.vaccine.2022.04.071.
4
Passive Immunity Should and Will Work for COVID-19 for Some Patients.
Clin Hematol Int. 2021 Apr 16;3(2):47-68. doi: 10.2991/chi.k.210328.001. eCollection 2021 Jun.
5
Untangling the Intricacies of Infection, Thrombosis, Vaccination, and Antiphospholipid Antibodies for COVID-19.
SN Compr Clin Med. 2021;3(10):2093-2108. doi: 10.1007/s42399-021-00992-3. Epub 2021 Jun 22.
6
In pursuit of the right tail for the COVID-19 incubation period.
Public Health. 2021 May;194:149-155. doi: 10.1016/j.puhe.2021.03.011. Epub 2021 Mar 26.
7
A Comprehensive Analysis of Maternal and Newborn Disease and Related Control for COVID-19.
SN Compr Clin Med. 2021;3(6):1272-1294. doi: 10.1007/s42399-021-00836-0. Epub 2021 Mar 17.

本文引用的文献

1
Complicating Infections Associated with Common Endemic Human Respiratory Coronaviruses.
Health Secur. 2021 Mar-Apr;19(2):195-208. doi: 10.1089/hs.2020.0067. Epub 2020 Nov 11.
2
A Minimalist Strategy Towards Temporarily Defining Protection for COVID-19.
SN Compr Clin Med. 2020;2(11):2059-2066. doi: 10.1007/s42399-020-00533-4. Epub 2020 Sep 19.
3
Human B Cell Clonal Expansion and Convergent Antibody Responses to SARS-CoV-2.
Cell Host Microbe. 2020 Oct 7;28(4):516-525.e5. doi: 10.1016/j.chom.2020.09.002. Epub 2020 Sep 3.
4
Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against SARS-CoV-2-Mediated Pathogenesis in Mice.
Cell Host Microbe. 2020 Sep 9;28(3):465-474.e4. doi: 10.1016/j.chom.2020.07.018. Epub 2020 Jul 30.
5
Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike.
Nature. 2020 Aug;584(7821):450-456. doi: 10.1038/s41586-020-2571-7. Epub 2020 Jul 22.
6
Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study.
Transfus Apher Sci. 2020 Oct;59(5):102875. doi: 10.1016/j.transci.2020.102875. Epub 2020 Jul 15.
7
SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls.
Nature. 2020 Aug;584(7821):457-462. doi: 10.1038/s41586-020-2550-z. Epub 2020 Jul 15.
8
Potently neutralizing and protective human antibodies against SARS-CoV-2.
Nature. 2020 Aug;584(7821):443-449. doi: 10.1038/s41586-020-2548-6. Epub 2020 Jul 15.
9
Human-IgG-Neutralizing Monoclonal Antibodies Block the SARS-CoV-2 Infection.
Cell Rep. 2020 Jul 21;32(3):107918. doi: 10.1016/j.celrep.2020.107918. Epub 2020 Jul 3.
10
Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19.
Nat Med. 2020 Sep;26(9):1428-1434. doi: 10.1038/s41591-020-0995-0. Epub 2020 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验