Suppr超能文献

基于形状的描述符用于高效的基于结构的片段生长。

Shape-Based Descriptors for Efficient Structure-Based Fragment Growing.

机构信息

ZBH-Center for Bioinformatics, Universität Hamburg, Bundesstr. 43, 20146 Hamburg, Germany.

Institut Recherches de Servier, 125 Chemin de Ronde, 78290 Croissy, France.

出版信息

J Chem Inf Model. 2020 Dec 28;60(12):6269-6281. doi: 10.1021/acs.jcim.0c00920. Epub 2020 Nov 16.

Abstract

Structure-based fragment growing is one of the key techniques in fragment-based drug design. Fragment growing is commonly practiced based on structural and biophysical data. Computational workflows are employed to predict which fragment elaborations could lead to high-affinity binders. Several such workflows exist but many are designed to be long running noninteractive systems. Shape-based descriptors have been proven to be fast and perform well at virtual-screening tasks. They could, therefore, be applied to the fragment-growing problem to enable an interactive fragment-growing workflow. In this work, we describe and analyze the use of specific shape-based directional descriptors for the task of fragment growing. The performance of these descriptors that we call ray volume matrices (RVMs) is evaluated on two data sets containing protein-ligand complexes. While the first set focuses on self-growing, the second measures practical performance in a cross-growing scenario. The runtime of screenings using RVMs as well as their robustness to three dimensional perturbations is also investigated. Overall, it can be shown that RVMs are useful to prefilter fragment candidates. For up to 84% of the 3299 generated self-growing cases and for up to 66% of the 326 generated cross-growing cases, RVMs could create poses with less than 2 Å root-mean-square deviation to the crystal structure with average query speeds of around 30,000 conformations per second. This opens the door for fast explorative screenings of fragment libraries.

摘要

基于结构的片段生长是基于片段的药物设计中的关键技术之一。片段生长通常基于结构和生物物理数据进行。计算工作流程用于预测哪些片段修饰可以导致高亲和力的结合物。存在几种这样的工作流程,但许多都是设计为长时间运行的非交互式系统。基于形状的描述符已被证明在虚拟筛选任务中快速且性能良好。因此,它们可以应用于片段生长问题,以实现交互式的片段生长工作流程。在这项工作中,我们描述和分析了特定的基于形状的有向描述符在片段生长任务中的使用。我们称之为射线体积矩阵(RVM)的这些描述符的性能在包含蛋白质-配体复合物的两个数据集上进行了评估。虽然第一个数据集侧重于自生长,但第二个数据集则衡量了交叉生长情况下的实际性能。还研究了使用 RVM 进行筛选的运行时以及它们对三维扰动的鲁棒性。总的来说,可以表明 RVM 可用于对片段候选物进行预过滤。对于 3299 个生成的自生长案例中的 84%,以及 326 个生成的交叉生长案例中的 66%,RVM 可以生成与晶体结构的 RMSD 小于 2Å 的构象,平均查询速度约为每秒 30,000 个构象。这为快速探索性片段文库筛选开辟了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验