Suppr超能文献

Stalis:一种基于模板的从头算配体设计的计算方法。

Stalis: A Computational Method for Template-Based Ab Initio Ligand Design.

机构信息

Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015.

出版信息

J Comput Chem. 2019 Jun 30;40(17):1622-1632. doi: 10.1002/jcc.25813. Epub 2019 Mar 4.

Abstract

Proteins interact with small molecules through specific molecular recognition, which is central to essential biological functions in living systems. Therefore, understanding such interactions is crucial for basic sciences and drug discovery. Here, we present Structure template-based ab initio ligand design solution (Stalis), a knowledge-based approach that uses structure templates from the Protein Data Bank libraries of whole ligands and their fragments and generates a set of molecules (virtual ligands) whose structures represent the pocket shape and chemical features of a given target binding site. Our benchmark performance evaluation shows that ligand structure-based virtual screening using virtual ligands from Stalis outperforms a receptor structure-based virtual screening using AutoDock Vina, demonstrating reliable overall screening performance applicable to computational high-throughput screening. However, virtual ligands from Stalis are worse in recognizing active compounds at the small fraction of a rank-ordered list of screened library compounds than crystal ligands, due to the low resolution of the virtual ligand structures. In conclusion, Stalis can facilitate drug discovery research by designing virtual ligands that can be used for fast ligand structure-based virtual screening. Moreover, Stalis provides actual three-dimensional ligand structures that likely bind to a target protein, enabling to gain structural insight into potential ligands. Stalis can be an efficient computational platform for high-throughput ligand design for fundamental biological study and drug discovery research at the proteomic level. © 2019 Wiley Periodicals, Inc.

摘要

蛋白质通过特定的分子识别与小分子相互作用,这是生命系统中基本生物功能的核心。因此,了解这些相互作用对于基础科学和药物发现至关重要。在这里,我们提出了基于结构模板的从头算配体设计解决方案(Stalis),这是一种基于知识的方法,它使用来自整个配体和其片段的蛋白质数据库库的结构模板,并生成一组分子(虚拟配体),其结构代表给定靶结合位点的口袋形状和化学特征。我们的基准性能评估表明,使用 Stalis 的虚拟配体进行基于配体结构的虚拟筛选优于使用 AutoDock Vina 进行基于受体结构的虚拟筛选,证明了适用于计算高通量筛选的可靠整体筛选性能。然而,由于虚拟配体结构的分辨率较低,Stalis 的虚拟配体在识别活性化合物方面的表现不如晶体配体在排序列表的一小部分化合物中的表现好。总之,Stalis 可以通过设计可用于快速配体结构基于虚拟筛选的虚拟配体来促进药物发现研究。此外,Stalis 提供了实际的三维配体结构,这些配体可能与靶蛋白结合,从而能够深入了解潜在的配体。Stalis 可以成为一种高效的计算平台,用于在蛋白质组学水平上进行高通量配体设计的基础生物学研究和药物发现研究。

相似文献

本文引用的文献

3
Software for molecular docking: a review.分子对接软件综述
Biophys Rev. 2017 Apr;9(2):91-102. doi: 10.1007/s12551-016-0247-1. Epub 2017 Jan 16.
9
Modulators of protein-protein interactions.蛋白质-蛋白质相互作用调节剂。
Chem Rev. 2014 May 14;114(9):4695-748. doi: 10.1021/cr400698c. Epub 2014 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验