Suppr超能文献

在对比增强计算机断层扫描中对患者知情的肝脏对比剂灌注进行建模

Modeling Patient-Informed Liver Contrast Perfusion in Contrast-enhanced Computed Tomography.

作者信息

Setiawan Hananiel, Ria Francesco, Abadi Ehsan, Fu Wanyi, Smith Taylor B, Samei Ehsan

机构信息

From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology.

出版信息

J Comput Assist Tomogr. 2020 Nov/Dec;44(6):882-886. doi: 10.1097/RCT.0000000000001095.

Abstract

OBJECTIVE

To determine the correlation between patient attributes and contrast enhancement in liver parenchyma and demonstrate the potential for patient-informed prediction and optimization of contrast enhancement in liver imaging.

METHODS

The study included 418 chest/abdomen/pelvis computed tomography scans, with 75% to 25% training-testing split. Two regression models were built to predict liver parenchyma contrast enhancement over time: first model (model A) utilized patient attributes (height, weight, sex, age, bolus volume, injection rate, scan times, body mass index, lean body mass) and bolus-tracking data. A second model (model B) only used the patient attributes. Pearson coefficient was used to assess predictive accuracy.

RESULTS

Weight- and height-related features were found to be statistically significant predictors (P < 0.05), weight being the strongest. Of the 2 models, model A (r = 0.75) showed greater accuracy than model B (r = 0.42).

CONCLUSIONS

Patient attributes can be used to build prediction model for liver parenchyma contrast enhancement. The model can have utility in optimization and improved consistency in contrast-enhanced liver imaging.

摘要

目的

确定患者属性与肝实质对比增强之间的相关性,并证明在肝脏成像中基于患者信息进行对比增强预测和优化的潜力。

方法

该研究纳入了418例胸部/腹部/骨盆计算机断层扫描,采用75%至25%的训练-测试分割。建立了两个回归模型来预测肝实质随时间的对比增强:第一个模型(模型A)利用患者属性(身高、体重、性别、年龄、团注体积、注射速率、扫描时间、体重指数、瘦体重)和团注追踪数据。第二个模型(模型B)仅使用患者属性。使用皮尔逊系数评估预测准确性。

结果

发现与体重和身高相关的特征是具有统计学意义的预测因子(P < 0.05),体重是最强的预测因子。在这两个模型中,模型A(r = 0.75)的准确性高于模型B(r = 0.42)。

结论

患者属性可用于建立肝实质对比增强的预测模型。该模型可用于优化肝脏对比增强成像,并提高其一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验