Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa293.
A mass spectrometry-based assessment of methicillin resistance in Staphylococcus aureus would have huge potential in addressing fast and effective prediction of antibiotic resistance. Since delays in the traditional antibiotic susceptibility testing, methicillin-resistant S. aureus remains a serious threat to human health.
Here, linking a 7 years of longitudinal study from two cohorts in the Taiwan area of over 20 000 individually resolved methicillin susceptibility testing results, we identify associations of methicillin resistance with the demographics and mass spectrometry data. When combined together, these connections allow for machine-learning-based predictions of methicillin resistance, with an area under the receiver operating characteristic curve of >0.85 in both the discovery [95% confidence interval (CI) 0.88-0.90] and replication (95% CI 0.84-0.86) populations.
Our predictive model facilitates early detection for methicillin resistance of patients with S. aureus infection. The large-scale antibiotic resistance study has unbiasedly highlighted putative candidates that could improve trials of treatment efficiency and inform on prescriptions.
基于质谱的金黄色葡萄球菌耐甲氧西林评估在快速、有效地预测抗生素耐药性方面具有巨大潜力。由于传统抗生素药敏试验的延迟,耐甲氧西林金黄色葡萄球菌仍然对人类健康构成严重威胁。
在这里,我们将台湾地区两个队列的 7 年纵向研究联系起来,对超过 20000 个单独确定的甲氧西林药敏试验结果进行了分析,确定了甲氧西林耐药性与人口统计学和质谱数据之间的关联。当这些关联结合在一起时,可以基于机器学习对甲氧西林耐药性进行预测,在发现队列[95%置信区间(CI)0.88-0.90]和复制队列(95%CI 0.84-0.86)中,受试者工作特征曲线下面积均>0.85。
我们的预测模型有助于早期发现金黄色葡萄球菌感染患者的甲氧西林耐药性。这项大规模的抗生素耐药性研究具有客观性,突出了可能提高治疗效率试验的候选药物,并为处方提供了信息。