Suppr超能文献

大规模质谱数据结合人口统计学分析可快速预测金黄色葡萄球菌的耐甲氧西林情况。

Large-scale mass spectrometry data combined with demographics analysis rapidly predicts methicillin resistance in Staphylococcus aureus.

机构信息

Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.

Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa293.

Abstract

BACKGROUND

A mass spectrometry-based assessment of methicillin resistance in Staphylococcus aureus would have huge potential in addressing fast and effective prediction of antibiotic resistance. Since delays in the traditional antibiotic susceptibility testing, methicillin-resistant S. aureus remains a serious threat to human health.

RESULTS

Here, linking a 7 years of longitudinal study from two cohorts in the Taiwan area of over 20 000 individually resolved methicillin susceptibility testing results, we identify associations of methicillin resistance with the demographics and mass spectrometry data. When combined together, these connections allow for machine-learning-based predictions of methicillin resistance, with an area under the receiver operating characteristic curve of >0.85 in both the discovery [95% confidence interval (CI) 0.88-0.90] and replication (95% CI 0.84-0.86) populations.

CONCLUSIONS

Our predictive model facilitates early detection for methicillin resistance of patients with S. aureus infection. The large-scale antibiotic resistance study has unbiasedly highlighted putative candidates that could improve trials of treatment efficiency and inform on prescriptions.

摘要

背景

基于质谱的金黄色葡萄球菌耐甲氧西林评估在快速、有效地预测抗生素耐药性方面具有巨大潜力。由于传统抗生素药敏试验的延迟,耐甲氧西林金黄色葡萄球菌仍然对人类健康构成严重威胁。

结果

在这里,我们将台湾地区两个队列的 7 年纵向研究联系起来,对超过 20000 个单独确定的甲氧西林药敏试验结果进行了分析,确定了甲氧西林耐药性与人口统计学和质谱数据之间的关联。当这些关联结合在一起时,可以基于机器学习对甲氧西林耐药性进行预测,在发现队列[95%置信区间(CI)0.88-0.90]和复制队列(95%CI 0.84-0.86)中,受试者工作特征曲线下面积均>0.85。

结论

我们的预测模型有助于早期发现金黄色葡萄球菌感染患者的甲氧西林耐药性。这项大规模的抗生素耐药性研究具有客观性,突出了可能提高治疗效率试验的候选药物,并为处方提供了信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验