Suppr超能文献

基于大规模样本利用机器学习方法快速检测环丙沙星耐药性

Large-Scale Samples Based Rapid Detection of Ciprofloxacin Resistance in Using Machine Learning Methods.

作者信息

Wang Chunxuan, Wang Zhuo, Wang Hsin-Yao, Chung Chia-Ru, Horng Jorng-Tzong, Lu Jang-Jih, Lee Tzong-Yi

机构信息

Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.

School of Data Science, The Chinese University of Hong Kong, Shenzhen, China.

出版信息

Front Microbiol. 2022 Mar 8;13:827451. doi: 10.3389/fmicb.2022.827451. eCollection 2022.

Abstract

is one of the most common causes of hospital- and community-acquired pneumoniae. Resistance to the extensively used quinolone antibiotic, such as ciprofloxacin, has increased in , which leads to the increase in the risk of initial antibiotic selection for treatment. Rapid and precise identification of ciprofloxacin-resistant (CIRKP) is essential for clinical therapy. Nowadays, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is another approach to discover antibiotic-resistant bacteria due to its shorter inspection time and lower cost than other current methods. Machine learning methods are introduced to assist in discovering significant biomarkers from MALDI-TOF MS data and construct prediction models for rapid antibiotic resistance identification. This study examined 16,997 samples taken from June 2013 to February 2018 as part of a longitudinal investigation done by Change Gung Memorial Hospitals (CGMH) at the Linkou branch. We applied traditional statistical approaches to identify significant biomarkers, and then a comparison was made between high-importance features in machine learning models and statistically selected features. Large-scale data guaranteed the statistical power of selected biomarkers. Besides, clustering analysis analyzed suspicious sub-strains to provide potential information about their influences on antibiotic resistance identification performance. For modeling, to simulate the real antibiotic resistance predicting challenges, we included basic information about patients and the types of specimen carriers into the model construction process and separated the training and testing sets by time. Final performance reached an area under the receiver operating characteristic curve (AUC) of 0.89 for support vector machine (SVM) and extreme gradient boosting (XGB) models. Also, logistic regression and random forest models both achieved AUC around 0.85. In conclusion, models provide sensitive forecasts of CIRKP, which may aid in early antibiotic selection against . The suspicious sub-strains could affect the model performance. Further works could keep on searching for methods to improve both the model accuracy and stability.

摘要

是医院获得性肺炎和社区获得性肺炎最常见的病因之一。在[具体对象]中,对广泛使用的喹诺酮类抗生素(如环丙沙星)的耐药性有所增加,这导致了针对[具体病症]治疗的初始抗生素选择风险增加。快速准确地鉴定环丙沙星耐药[具体细菌名称](CIRKP)对临床治疗至关重要。如今,基质辅助激光解吸电离飞行时间质谱(MALDI - TOF MS)由于其检测时间比其他现有方法短且成本低,成为发现抗生素耐药菌的另一种方法。引入机器学习方法以协助从MALDI - TOF MS数据中发现重要生物标志物,并构建用于快速鉴定抗生素耐药性的预测模型。本研究检查了2013年6月至2018年2月期间采集的16997份样本,这些样本是长庚纪念医院(CGMH)林口分院进行的一项纵向调查的一部分。我们应用传统统计方法来识别重要生物标志物,然后对机器学习模型中的高重要性特征与统计选择的特征进行比较。大规模数据保证了所选生物标志物的统计效力。此外,聚类分析对可疑亚菌株进行分析,以提供有关它们对抗生素耐药性鉴定性能影响的潜在信息。对于建模,为了模拟实际的抗生素耐药性预测挑战,我们将患者的基本信息和标本载体类型纳入模型构建过程,并按时间划分训练集和测试集。支持向量机(SVM)和极端梯度提升(XGB)模型的最终性能在接收器操作特征曲线(AUC)下达到0.89。此外,逻辑回归和随机森林模型的AUC均达到约0.85。总之,模型对CIRKP提供了敏感预测,这可能有助于针对[具体病症]进行早期抗生素选择。可疑亚菌株可能会影响模型性能。进一步的工作可以继续寻找提高模型准确性和稳定性的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b32/8959214/69aae67a1c2a/fmicb-13-827451-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验