Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45345, USA.
Department of Dermatology, Wright State Physicians, Wright State University, Dayton, OH 45345, USA.
Int J Mol Sci. 2020 Nov 12;21(22):8517. doi: 10.3390/ijms21228517.
Microvesicle particles (MVP) secreted by a variety of cell types in response to reactive oxygen species (ROS)-generating pro-oxidative stressors have been implicated in modifying the cellular responses including the sensitivity to therapeutic agents. Our previous studies have shown that expression of a G-protein coupled, platelet-activating factor-receptor (PAFR) pathway plays critical roles in pro-oxidative stressors-mediated cancer growth and MVP release. As most therapeutic agents act as pro-oxidative stressors, the current studies were designed to determine the role of the PAFR signaling in targeted therapies (i.e., gefitinib and erlotinib)-mediated MVP release and underlying mechanisms using PAFR-expressing human A549 and H1299 non-small cell lung cancer (NSCLC) cell lines. Our studies demonstrate that both gefitinib and erlotinib generate ROS in a dose-dependent manner in a process blocked by antioxidant and PAFR antagonist, verifying their pro-oxidative stressor's ability, and the role of the PAFR in this effect. We observed that these targeted therapies induce MVP release in a dose- and time-dependent manner, similar to a PAFR-agonist, carbamoyl-PAF (CPAF), and PAFR-independent agonist, phorbol myristate acetate (PMA), used as positive controls. To confirm the PAFR dependency, we demonstrate that siRNA-mediated PAFR knockdown or PAFR antagonist significantly blocked only targeted therapies- and CPAF-mediated but not PMA-induced MVP release. The use of pharmacologic inhibitor strategy suggested the involvement of the lipid ceramide-generating enzyme, acid sphingomyelinase (aSMase) in MVP biogenesis, and observed that regardless of the stimuli used, aSMase inhibition significantly blocked MVP release. As mitogen-activated protein kinase (MAPK; ERK1/2 and p38) pathways crosstalk with PAFR, their inhibition also significantly attenuated targeted therapies-mediated MVP release. These findings indicate that PAFR signaling could be targeted to modify cellular responses of targeted therapies in lung cancer cells.
微泡颗粒 (MVP) 是各种细胞类型在应对产生活性氧 (ROS) 的促氧化应激物时分泌的,已被牵连到改变细胞反应中,包括对治疗药物的敏感性。我们之前的研究表明,G 蛋白偶联的血小板激活因子受体 (PAFR) 途径的表达在促氧化应激物介导的癌症生长和 MVP 释放中发挥关键作用。由于大多数治疗药物都作为促氧化应激物发挥作用,因此目前的研究旨在确定 PAFR 信号在靶向治疗(即吉非替尼和厄洛替尼)介导的 MVP 释放中的作用以及使用表达 PAFR 的人 A549 和 H1299 非小细胞肺癌 (NSCLC) 细胞系的潜在机制。我们的研究表明,吉非替尼和厄洛替尼都以剂量依赖的方式产生 ROS,这一过程可被抗氧化剂和 PAFR 拮抗剂阻断,从而验证了它们作为促氧化应激物的能力,以及 PAFR 在这种作用中的作用。我们观察到,这些靶向治疗以剂量和时间依赖的方式诱导 MVP 释放,类似于 PAFR 激动剂,N-乙酰基-S-十六烷基-L-半胱氨酸(carbamoyl-PAF,CPAF),和 PAFR 非依赖性激动剂,十四烷酰佛波醇-12-十四酸酯(phorbol myristate acetate,PMA),用作阳性对照。为了确认 PAFR 的依赖性,我们证明 siRNA 介导的 PAFR 敲低或 PAFR 拮抗剂仅能阻断靶向治疗和 CPAF 介导的但不能阻断 PMA 诱导的 MVP 释放。使用药理抑制剂策略表明涉及脂质神经酰胺生成酶,酸性鞘磷脂酶 (acid sphingomyelinase,aSMase) 在 MVP 生物发生中的作用,并观察到无论使用何种刺激物,aSMase 抑制剂均可显著阻断 MVP 释放。由于丝裂原激活的蛋白激酶 (mitogen-activated protein kinase,MAPK;ERK1/2 和 p38) 途径与 PAFR 相互作用,它们的抑制也显著减弱了靶向治疗介导的 MVP 释放。这些发现表明,PAFR 信号可以作为靶点,改变肺癌细胞中靶向治疗的细胞反应。