Suppr超能文献

在线心理健康筛查工具对求助、获得护理和自杀意念及自杀意图的影响:来自美国大型队列中互联网搜索行为的证据。

Impact of online mental health screening tools on help-seeking, care receipt, and suicidal ideation and suicidal intent: Evidence from internet search behavior in a large U.S. cohort.

机构信息

Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, 46 Centerra Parkway, EverGreen Center, Suite 315, Lebanon, NH, 03756, United States; Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Williamson Building, 3rd Floor, 1 Medical Center Drive, Lebanon, NH, 03756, United States; Department of Psychiatry, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, Lebanon, NH, 03756, United States; Quantitative Biomedical Sciences Program, Dartmouth College, NH, United States.

Microsoft Research, 13 Shenkar Street, Herzeliya, 4672513, Israel; Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.

出版信息

J Psychiatr Res. 2022 Jan;145:276-283. doi: 10.1016/j.jpsychires.2020.11.010. Epub 2020 Nov 9.

Abstract

INTRODUCTION

Most people with psychiatric illnesses do not receive treatment for almost a decade after disorder onset. Online mental health screens reflect one mechanism designed to shorten this lag in help-seeking, yet there has been limited research on the effectiveness of screening tools in naturalistic settings.

MATERIAL AND METHODS

We examined a cohort of persons directed to a mental health screening tool via the Bing search engine (n = 126,060). We evaluated the impact of tool content on later searches for mental health self-references, self-diagnosis, care seeking, psychoactive medications, suicidal ideation, and suicidal intent. Website characteristics were evaluated by pairs of independent raters to ascertain screen type and content. These included the presence/absence of a suggestive diagnosis, a message on interpretability, as well as referrals to digital treatments, in-person treatments, and crisis services.

RESULTS

Using machine learning models, the results suggested that screen content predicted later searches with mental health self-references (AUC = 0·73), mental health self-diagnosis (AUC = 0·69), mental health care seeking (AUC = 0·61), psychoactive medications (AUC = 0·55), suicidal ideation (AUC = 0·58), and suicidal intent (AUC = 0·60). Cox-proportional hazards models suggested individuals utilizing tools with in-person care referral were significantly more likely to subsequently search for methods to actively end their life (HR = 1·727, p = 0·007).

DISCUSSION

Online screens may influence help-seeking behavior, suicidal ideation, and suicidal intent. Websites with referrals to in-person treatments could put persons at greater risk of active suicidal intent. Further evaluation using large-scale randomized controlled trials is needed.

摘要

简介

大多数精神疾病患者在发病后近十年内都未接受治疗。在线心理健康筛查反映了一种旨在缩短寻求帮助的滞后时间的机制,但在自然环境中,对筛查工具的有效性的研究有限。

材料与方法

我们研究了通过 Bing 搜索引擎(n=126060)被引导至心理健康筛查工具的人群。我们评估了工具内容对后来搜索心理健康自我参照、自我诊断、寻求治疗、精神活性药物、自杀意念和自杀意图的影响。网站特征由两名独立评估者评估,以确定屏幕类型和内容。这些内容包括是否存在暗示性诊断、关于可解释性的信息,以及对数字治疗、面对面治疗和危机服务的推荐。

结果

使用机器学习模型,结果表明屏幕内容预测了与心理健康自我参照(AUC=0.73)、心理健康自我诊断(AUC=0.69)、心理健康治疗寻求(AUC=0.61)、精神活性药物(AUC=0.55)、自杀意念(AUC=0.58)和自杀意图(AUC=0.60)的后续搜索。Cox 比例风险模型表明,使用有面对面治疗推荐的工具的个体随后更有可能搜索主动结束生命的方法(HR=1.727,p=0.007)。

讨论

在线筛查可能会影响寻求帮助的行为、自杀意念和自杀意图。有面对面治疗推荐的网站可能会使患者面临更大的主动自杀意图风险。需要使用大规模随机对照试验进行进一步评估。

相似文献

5
Development and Evaluation of a Web-Based Resource for Suicidal Thoughts: NowMattersNow.org.
J Med Internet Res. 2019 May 2;21(5):e13183. doi: 10.2196/13183.
6
Reflection of Suicidal Ideation in Terms Searched for by Japanese Internet Users.
Crisis. 2023 Jul;44(4):361-364. doi: 10.1027/0227-5910/a000854. Epub 2022 Apr 6.
9
Internet-Based Cognitive Behavioral Therapy to Reduce Suicidal Ideation: A Systematic Review and Meta-analysis.
JAMA Netw Open. 2020 Apr 1;3(4):e203933. doi: 10.1001/jamanetworkopen.2020.3933.

引用本文的文献

1
Crowdsourcing integrated into a digital mental health platform for anxiety and depression: A pilot randomized controlled trial.
Internet Interv. 2024 Sep 11;38:100774. doi: 10.1016/j.invent.2024.100774. eCollection 2024 Dec.
3
IRT analysis of the BDI-II for early online depression detection: validation in a Mexican population.
Front Psychol. 2025 Apr 15;16:1562016. doi: 10.3389/fpsyg.2025.1562016. eCollection 2025.
6
A large-scale observational comparison of antidepressants and their effects.
J Psychiatr Res. 2024 Oct;178:219-224. doi: 10.1016/j.jpsychires.2024.08.001. Epub 2024 Aug 3.
8
Machine learning and the prediction of suicide in psychiatric populations: a systematic review.
Transl Psychiatry. 2024 Mar 9;14(1):140. doi: 10.1038/s41398-024-02852-9.
9
How adults with suspected depressive disorder experience online depression screening: A qualitative interview study.
Internet Interv. 2023 Oct 23;34:100685. doi: 10.1016/j.invent.2023.100685. eCollection 2023 Dec.
10
Telepsychiatry in an Era of Digital Mental Health Startups.
Curr Psychiatry Rep. 2023 Jun;25(6):263-272. doi: 10.1007/s11920-023-01425-9. Epub 2023 May 11.

本文引用的文献

2
Ethical dilemmas posed by mobile health and machine learning in psychiatry research.
Bull World Health Organ. 2020 Apr 1;98(4):270-276. doi: 10.2471/BLT.19.237107. Epub 2020 Feb 25.
3
Cognitive-Behavioral Therapy in the Digital Age: Presidential Address.
Behav Ther. 2020 Jan;51(1):1-14. doi: 10.1016/j.beth.2019.08.001. Epub 2019 Aug 8.
4
A systematic review of online depression screening tools for use in the South African context.
S Afr J Psychiatr. 2019 Nov 12;25:1373. doi: 10.4102/sajpsychiatry.v25i0.1373. eCollection 2019.
5
Young People Seeking Help Online for Mental Health: Cross-Sectional Survey Study.
JMIR Ment Health. 2019 Aug 26;6(8):e13524. doi: 10.2196/13524.
7
Assessing the value of screening tools: reviewing the challenges and opportunities of cost-effectiveness analysis.
Public Health Rev. 2018 Jul 13;39:17. doi: 10.1186/s40985-018-0093-8. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验