Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110.
Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110;
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30488-30497. doi: 10.1073/pnas.2017056117. Epub 2020 Nov 16.
Transforming growth factor-β (TGF-β) signaling is a critical regulator for articular cartilage tissue maintenance and chondrocyte homeostasis. Nonetheless, the regulatory networks and downstream signaling pathways that govern the chondroprotective function of TGF-β in the context of osteoarthritis (OA) are not fully defined. Recent studies reveal that mice with postnatal deletion of triple forkhead box class Os (FoxOs) (1, 3, and 4) spontaneously develop OA-like pathologies. The OA phenotype largely recapitulates that observed in mice with loss of TGF-βR2. In the present study, we investigated the role of FoxOs as downstream mediators of TGF-β signaling and define their role in articular cartilage homeostasis. Among the three FoxOs (1, 3, and 4), TGF-β signaling exclusively regulates FoxO1 in a TGF-β activated kinase 1 (TAK1)-dependent manner. Furthermore, FoxO1 was genetically ablated in mice in a tissue-specific manner in articular cartilage or overexpressed in adult cartilage immediately followed by meniscal/ligament injury (MLI). Histological and microcomputed tomography (micro-CT) analyses demonstrated that loss of FoxO1 postnatally in articular cartilage leads to OA-like pathologies, and gain of FoxO1 in adult cartilage has both preventative and therapeutic effects on surgically induced OA. Mechanistically, FoxO1 was found to maintain articular chondrocyte homeostasis through induction of anabolic and autophagy-related gene expressions. Importantly, overexpression of FoxO1 markedly rescued the OA phenotypes caused by deficiency in TGF-β signaling in chondrocytes. Our study identifies that TGF-β/TAK1-FoxO1 is a key signaling cascade in regulation of articular cartilage autophagy and homeostasis and is a potentially important therapeutic target for OA-like joint diseases.
转化生长因子-β(TGF-β)信号是关节软骨组织维持和软骨细胞内稳态的关键调节因子。然而,在骨关节炎(OA)背景下,调控 TGF-β的软骨保护功能的调节网络和下游信号通路尚未完全确定。最近的研究表明,出生后三重叉头框 O 类(FoxO1、3 和 4)缺失的小鼠会自发发展出类似 OA 的病变。OA 表型在很大程度上再现了 TGF-βR2 缺失小鼠中观察到的表型。在本研究中,我们研究了 FoxO 作为 TGF-β信号下游介质的作用,并定义了它们在关节软骨内稳态中的作用。在这三种 FoxO(1、3 和 4)中,TGF-β信号仅通过 TGF-β激活激酶 1(TAK1)依赖性方式调节 FoxO1。此外,FoxO1 在组织特异性方面在关节软骨中或在半月板/韧带损伤(MLI)后立即在成年软骨中被基因敲除。组织学和微计算机断层扫描(micro-CT)分析表明,出生后关节软骨中 FoxO1 的缺失会导致类似 OA 的病变,而成年软骨中 FoxO1 的过表达对手术诱导的 OA 具有预防和治疗作用。机制上,发现 FoxO1 通过诱导合成代谢和自噬相关基因的表达来维持关节软骨细胞内稳态。重要的是,FoxO1 的过表达显著挽救了软骨细胞中 TGF-β信号缺失引起的 OA 表型。我们的研究表明,TGF-β/TAK1-FoxO1 是调节关节软骨自噬和内稳态的关键信号级联,是类似 OA 的关节疾病的潜在重要治疗靶点。