Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, PO Box 35, 40014, Jyväskylä, Finland.
Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, PL 57, 00014, Helsinki, Finland.
Sci Rep. 2020 Nov 16;10(1):19846. doi: 10.1038/s41598-020-76806-8.
Dogs process faces and emotional expressions much like humans, but the time windows important for face processing in dogs are largely unknown. By combining our non-invasive electroencephalography (EEG) protocol on dogs with machine-learning algorithms, we show category-specific dog brain responses to pictures of human and dog facial expressions, objects, and phase-scrambled faces. We trained a support vector machine classifier with spatiotemporal EEG data to discriminate between responses to pairs of images. The classification accuracy was highest for humans or dogs vs. scrambled images, with most informative time intervals of 100-140 ms and 240-280 ms. We also detected a response sensitive to threatening dog faces at 30-40 ms; generally, responses differentiating emotional expressions were found at 130-170 ms, and differentiation of faces from objects occurred at 120-130 ms. The cortical sources underlying the highest-amplitude EEG signals were localized to the dog visual cortex.
狗在处理面部和情绪表情方面与人类非常相似,但对于狗来说,对面部处理很重要的时间窗口在很大程度上是未知的。通过将我们在狗身上的非侵入性脑电图 (EEG) 方案与机器学习算法相结合,我们展示了狗对人类和狗面部表情、物体以及相位打乱的面部图片的特定于类别的大脑反应。我们使用时空 EEG 数据训练了一个支持向量机分类器,以区分一对图像的反应。对人类或狗与乱序图像的分类准确率最高,最具信息量的时间间隔为 100-140ms 和 240-280ms。我们还在 30-40ms 时检测到对威胁性狗脸敏感的反应;通常,在 130-170ms 时会发现区分情绪表达的反应,而在 120-130ms 时会发现区分面部和物体的反应。具有最高幅度 EEG 信号的皮质源被定位到狗的视觉皮层。