Suppr超能文献

个人相关面孔的快速神经表征

Rapid Neural Representations of Personally Relevant Faces.

作者信息

Bayer Mareike, Berhe Oksana, Dziobek Isabel, Johnstone Tom

机构信息

Berlin School of Mind and Brain, Department of Psychology, Humboldt-Universität zu Berlin, 10999 Berlin, Germany.

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany.

出版信息

Cereb Cortex. 2021 Aug 26;31(10):4699-4708. doi: 10.1093/cercor/bhab116.

Abstract

The faces of those most personally relevant to us are our primary source of social information, making their timely perception a priority. Recent research indicates that gender, age and identity of faces can be decoded from EEG/MEG data within 100 ms. Yet, the time course and neural circuitry involved in representing the personal relevance of faces remain unknown. We applied simultaneous EEG-fMRI to examine neural responses to emotional faces of female participants' romantic partners, friends, and a stranger. Combining EEG and fMRI in cross-modal representational similarity analyses, we provide evidence that representations of personal relevance start prior to structural encoding at 100 ms, with correlated representations in visual cortex, but also in prefrontal and midline regions involved in value representation, and monitoring and recall of self-relevant information. Our results add to an emerging body of research that suggests that models of face perception need to be updated to account for rapid detection of personal relevance in cortical circuitry beyond the core face processing network.

摘要

那些与我们个人关系最为密切的人的面孔是我们社会信息的主要来源,因此及时感知这些面孔至关重要。最近的研究表明,面孔的性别、年龄和身份可在100毫秒内从脑电图/脑磁图数据中解码出来。然而,表征面孔个人相关性所涉及的时间进程和神经回路仍然未知。我们应用同步脑电图-功能磁共振成像技术来检测女性参与者对其浪漫伴侣、朋友和陌生人的情感面孔的神经反应。通过在跨模态表征相似性分析中结合脑电图和功能磁共振成像,我们提供了证据表明,个人相关性的表征在100毫秒的结构编码之前就已开始,在视觉皮层以及涉及价值表征、自我相关信息监测和回忆的前额叶及中线区域存在相关表征。我们的研究结果补充了一项新兴的研究,该研究表明,面部感知模型需要更新,以解释在核心面部处理网络之外的皮层回路中对个人相关性的快速检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验