Suppr超能文献

基于深度学习的神经网络的癌症细胞系鉴定方法。

Towards image-based cancer cell lines authentication using deep neural networks.

机构信息

School of Engineering and Digital Arts, University of Kent, Canterbury, UK.

Department of Computer Science, The National University of Computer and Emerging Sciences, B Block, Faisal Town, Lahore, Pakistan.

出版信息

Sci Rep. 2020 Nov 16;10(1):19857. doi: 10.1038/s41598-020-76670-6.

Abstract

Although short tandem repeat (STR) analysis is available as a reliable method for the determination of the genetic origin of cell lines, the occurrence of misauthenticated cell lines remains an important issue. Reasons include the cost, effort and time associated with STR analysis. Moreover, there are currently no methods for the discrimination between isogenic cell lines (cell lines of the same genetic origin, e.g. different cell lines derived from the same organism, clonal sublines, sublines adapted to grow under certain conditions). Hence, additional complementary, ideally low-cost and low-effort methods are required that enable (1) the monitoring of cell line identity as part of the daily laboratory routine and 2) the authentication of isogenic cell lines. In this research, we automate the process of cell line identification by image-based analysis using deep convolutional neural networks. Two different convolutional neural networks models (MobileNet and InceptionResNet V2) were trained to automatically identify four parental cancer cell line (COLO 704, EFO-21, EFO-27 and UKF-NB-3) and their sublines adapted to the anti-cancer drugs cisplatin (COLO-704CDDP, EFO-21CDDP, EFO-27CDDP) or oxaliplatin (UKF-NB-3OXALI), hence resulting in an eight-class problem. Our best performing model, InceptionResNet V2, achieved an average of 0.91 F1-score on tenfold cross validation with an average area under the curve (AUC) of 0.95, for the 8-class problem. Our best model also achieved an average F1-score of 0.94 and 0.96 on the authentication through a classification process of the four parental cell lines and the respective drug-adapted cells, respectively, on a four-class problem separately. These findings provide the basis for further development of the application of deep learning for the automation of cell line authentication into a readily available easy-to-use methodology that enables routine monitoring of the identity of cell lines including isogenic cell lines. It should be noted that, this is just a proof of principal that, images can also be used as a method for authentication of cancer cell lines and not a replacement for the STR method.

摘要

尽管短串联重复序列(STR)分析是一种可靠的方法,可用于确定细胞系的遗传起源,但错误鉴定的细胞系仍然是一个重要问题。原因包括 STR 分析相关的成本、努力和时间。此外,目前尚无区分同基因细胞系(具有相同遗传起源的细胞系,例如,来自同一生物体的不同细胞系、克隆亚系、适应在特定条件下生长的亚系)的方法。因此,需要额外的补充方法,理想情况下是低成本和低努力的方法,这些方法可以(1)作为日常实验室常规的一部分,监测细胞系的身份,以及(2)鉴定同基因细胞系。在这项研究中,我们使用基于图像的分析和深度卷积神经网络来自动化细胞系鉴定过程。我们训练了两种不同的卷积神经网络模型(MobileNet 和 InceptionResNet V2),以自动识别四种亲本癌细胞系(COLO 704、EFO-21、EFO-27 和 UKF-NB-3)及其适应抗癌药物顺铂(COLO-704CDDP、EFO-21CDDP、EFO-27CDDP)或奥沙利铂(UKF-NB-3OXALI)的亚系,因此形成了一个八类问题。表现最好的模型是 InceptionResNet V2,在十折交叉验证中平均获得 0.91 的 F1 分数,平均曲线下面积(AUC)为 0.95,用于 8 类问题。我们最好的模型在分别为四类问题的四个亲本细胞系和各自的药物适应细胞的分类过程中,也分别获得了 0.94 和 0.96 的平均 F1 分数。这些发现为进一步开发深度学习在细胞系鉴定自动化中的应用提供了基础,使其成为一种易于使用的方法,可常规监测细胞系的身份,包括同基因细胞系。需要注意的是,这只是一个原理证明,即图像也可以作为癌细胞系鉴定的一种方法,而不能替代 STR 方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9bf/7670423/bc0316dd0f2e/41598_2020_76670_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验