Dhibar Saptarshi, Malik Sudip
School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
ACS Appl Mater Interfaces. 2020 Dec 2;12(48):54053-54067. doi: 10.1021/acsami.0c14478. Epub 2020 Nov 17.
This work reports on the urchin-like architecture-based nickel cobaltite (NiCoO)/reduced graphene oxide (rGO)/conducting polymer [polyaniline (PANI) or polypyrrole (PPy)] nanocomposites prepared through a hydrothermal synthesis procedure, followed by polymerization techniques. Subsequently, these materials are subjected to electrochemical investigation to search for promising electrode materials for energy storage applications. Interestingly, the morphology of NiCoO varies upon the addition of rGO as well as nitrogen-doped rGO (N-rGO). When it is composite with rGO, it forms an urchin-like architecture, and with N-rGO, it forms nanoparticle structures having a diameter of 90 ± 10 nm. Further, these nanostructures are intricately coated by conducting polymers (such as PANI and PPy) as evidenced from the field emission scanning electron microscopy and high-resolution transmission electron microscopy observations, and the overall shape does not alter after the modification. All composites are investigated thoroughly by Fourier transform infrared, Raman, X-ray powder diffraction, and X-ray photoelectron spectroscopies to confer the formation and presence of polymers. The NiCoO/rGO/PPy nanocomposites exhibit an excellent specific capacitance of 1547 ± 5 F/g at a current density of 0.5 A/g, a better energy density of 34.37 ± 0.11 W h/kg at 0.5 A/g, a notable power density of 99.98 ± 0.31 W/kg at 0.5 A/g, and retains its 94 ± 1% specific capacitance after 5000 charge-discharge cycles. The uniform coating over the urchin-like architecture by conducting polymers constructs a typical morphology, and possibly, it is the key factor behind gaining such superior electrochemical behavior owing to (a) the enhancement of surface area and (b) the combination of double-layer capacitive and pseudocapacitive properties. Furthermore, a symmetric flexible supercapacitor device made of NiCoO/rGO/PPy nanocomposites provides superior electrochemical behavior.
本文报道了通过水热合成法制备的基于海胆状结构的钴酸镍(NiCoO)/还原氧化石墨烯(rGO)/导电聚合物[聚苯胺(PANI)或聚吡咯(PPy)]纳米复合材料,随后采用聚合技术。随后,对这些材料进行电化学研究,以寻找用于储能应用的有前景的电极材料。有趣的是,NiCoO的形态会随着rGO以及氮掺杂rGO(N-rGO)的添加而变化。当它与rGO复合时,形成海胆状结构,与N-rGO复合时,形成直径为90±10nm的纳米颗粒结构。此外,从场发射扫描电子显微镜和高分辨率透射电子显微镜观察结果可以看出,这些纳米结构被导电聚合物(如PANI和PPy)复杂地包覆,并且改性后整体形状不变。通过傅里叶变换红外光谱、拉曼光谱、X射线粉末衍射和X射线光电子能谱对所有复合材料进行了深入研究,以确定聚合物的形成和存在。NiCoO/rGO/PPy纳米复合材料在电流密度为0.5A/g时表现出优异 的比电容,为1547±5F/g,在0.5A/g时具有更好的能量密度,为34.37±0.11W h/kg,在0.5A/g时具有显著的功率密度,为99.98±0.31W/kg,并且在5000次充放电循环后保留其94±1%的比电容。导电聚合物在海胆状结构上的均匀包覆构建了一种典型的形态,并且这可能是获得如此优异的电化学行为的关键因素,这是由于(a)表面积的增加和(b)双层电容和赝电容特性的结合。此外,由NiCoO/rGO/PPy纳米复合材料制成的对称柔性超级电容器装置具有优异的电化学行为。