Xu Zichen, Zhang Zhiqiang, Yin Huiling, Hou Shengxian, Lin Hongtao, Zhou Jin, Zhuo Shuping
School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China
RSC Adv. 2020 Jan 17;10(6):3122-3129. doi: 10.1039/c9ra07842h. eCollection 2020 Jan 16.
Conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly 3,4-ethylenedioxythiophene (PEDOT), play an important role in the application of pseudocapacitors. It is necessary to explore the effects of different conductive polymers in electrode composites. Herein, we prepare zinc sulfide/reduced graphene oxide (ZnS/RGO) by the hydrothermal method, and conductive polymers (PANI, PPy, PTh and PEDOT) doped with the same mass ratio (polymer to 70 wt%) polymerization on the surface of ZnS/RGO composite. For the supercapacitor application, the ZnS/RGO/PANI ternary electrode composite possesses the best capacitance performance and cycle stability out of all of the polymer-coated ZnS/RGO composites. In the three-electrode system, the discharge specific capacitance and cycle stability of ZnS/RGO/PANI are 1045.3 F g and 160% at 1 A g after 1000 loops. In a two-electrode symmetric system, the discharge specific capacitance and cycle stability of ZnS/RGO/PANI are 722.0 F g and 76.1% at 1 A g after 1000 loops, and the greatest energy and power density of the ZnS/RGO/PANI electrode are 349.7 W h kg and 18.0 kW kg. In addition, conductive polymers can effectively improve the voltage range of the electrode composites in 6 M KOH electrolyte for the two-electrode system. The discharge voltage ∼1.6 V makes them promising electrode materials for supercapacitors.
导电聚合物,如聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩(PTh)和聚3,4-乙撑二氧噻吩(PEDOT),在赝电容器的应用中发挥着重要作用。探索不同导电聚合物在电极复合材料中的作用很有必要。在此,我们通过水热法制备了硫化锌/还原氧化石墨烯(ZnS/RGO),并使相同质量比(聚合物与70 wt%)的导电聚合物(PANI、PPy PTh和PEDOT)在ZnS/RGO复合材料表面聚合。对于超级电容器应用,在所有聚合物包覆的ZnS/RGO复合材料中,ZnS/RGO/PANI三元电极复合材料具有最佳的电容性能和循环稳定性。在三电极体系中,ZnS/RGO/PANI在1 A g下1000次循环后的放电比电容和循环稳定性分别为1045.3 F/g和160%。在两电极对称体系中,ZnS/RGO/PANI在1 A g下1000次循环后的放电比电容和循环稳定性分别为722.0 F/g和76.1%,且ZnS/RGO/PANI电极的最大能量密度和功率密度分别为349.7 W h/kg和18.0 kW/kg。此外,导电聚合物可有效提高两电极体系在6 M KOH电解液中电极复合材料的电压范围。约1.6 V的放电电压使其成为有前景的超级电容器电极材料。