Suppr超能文献

追踪计算生物学中的自噬足迹。

Tracing the footsteps of autophagy in computational biology.

机构信息

Translational Health Science and Technology Institute, Faridabad, India.

Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, India.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa286.

Abstract

Autophagy plays a crucial role in maintaining cellular homeostasis through the degradation of unwanted materials like damaged mitochondria and misfolded proteins. However, the contribution of autophagy toward a healthy cell environment is not only limited to the cleaning process. It also assists in protein synthesis when the system lacks the amino acids' inflow from the extracellular environment due to diet consumptions. Reduction in the autophagy process is associated with diseases like cancer, diabetes, non-alcoholic steatohepatitis, etc., while uncontrolled autophagy may facilitate cell death. We need a better understanding of the autophagy processes and their regulatory mechanisms at various levels (molecules, cells, tissues). This demands a thorough understanding of the system with the help of mathematical and computational tools. The present review illuminates how systems biology approaches are being used for the study of the autophagy process. A comprehensive insight is provided on the application of computational methods involving mathematical modeling and network analysis in the autophagy process. Various mathematical models based on the system of differential equations for studying autophagy are covered here. We have also highlighted the significance of network analysis and machine learning in capturing the core regulatory machinery governing the autophagy process. We explored the available autophagic databases and related resources along with their attributes that are useful in investigating autophagy through computational methods. We conclude the article addressing the potential future perspective in this area, which might provide a more in-depth insight into the dynamics of autophagy.

摘要

自噬在通过降解受损线粒体和错误折叠的蛋白质等不需要的物质来维持细胞内稳态方面起着至关重要的作用。然而,自噬对健康细胞环境的贡献不仅限于清洁过程。当由于饮食摄入,系统缺乏来自细胞外环境的氨基酸流入时,它还有助于蛋白质合成。自噬过程的减少与癌症、糖尿病、非酒精性脂肪性肝炎等疾病有关,而不受控制的自噬可能导致细胞死亡。我们需要更好地了解自噬过程及其在各个层面(分子、细胞、组织)的调节机制。这需要借助数学和计算工具来深入了解该系统。本综述阐明了系统生物学方法如何用于自噬过程的研究。本文全面介绍了涉及数学建模和网络分析的计算方法在自噬过程中的应用。这里涵盖了基于微分方程系统的各种用于研究自噬的数学模型。我们还强调了网络分析和机器学习在捕捉控制自噬过程的核心调节机制方面的重要性。我们探讨了可用的自噬数据库及其相关资源,以及它们通过计算方法研究自噬的有用属性。最后,我们在文章中探讨了该领域的潜在未来展望,这可能会更深入地了解自噬的动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04f7/8293817/1e9e3738fd23/bbaa286f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验