Suppr超能文献

多组学研究用于解释全基因组关联研究。

Multi-omics study for interpretation of genome-wide association study.

机构信息

Department of Ocular Pathology and Imaging Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan.

Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.

出版信息

J Hum Genet. 2021 Jan;66(1):3-10. doi: 10.1038/s10038-020-00842-5. Epub 2020 Sep 18.

Abstract

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with complex traits, including a wide variety of diseases. Despite the successful identification of associated loci, interpreting GWAS findings remains challenging and requires other biological resources. Omics, including genomics, transcriptomics, proteomics, metabolomics, and epigenomics, are increasingly used in a broad range of research fields. Integrative analyses applying GWAS with these omics data are expected to expand our knowledge of complex traits and provide insight into the pathogenesis of complex diseases and their causative factors. Recently, associations between genetic variants and omics data have been comprehensively evaluated, providing new information on the influence of genetic variants on omics. Furthermore, recent advances in analytic methods, including single-cell technologies, have revealed previously unknown disease mechanisms. To advance our understanding of complex traits, integrative analysis using GWAS with multi-omics data is needed. In this review, I describe successful examples of integrative analyses based on omics and GWAS, discuss the limitations of current multi-omics analyses, and provide a perspective on future integrative studies.

摘要

全基因组关联研究(GWAS)已经确定了数千个与复杂性状相关的遗传位点,包括各种各样的疾病。尽管已经成功地确定了相关的位点,但解释 GWAS 结果仍然具有挑战性,需要其他生物学资源。包括基因组学、转录组学、蛋白质组学、代谢组学和表观基因组学在内的组学,在广泛的研究领域中得到了越来越多的应用。将 GWAS 与这些组学数据进行综合分析,有望扩展我们对复杂性状的认识,并深入了解复杂疾病的发病机制及其致病因素。最近,对遗传变异与组学数据之间的关联进行了全面评估,提供了关于遗传变异对组学影响的新信息。此外,包括单细胞技术在内的分析方法的最新进展揭示了以前未知的疾病机制。为了深入了解复杂性状,需要使用 GWAS 与多组学数据进行综合分析。在这篇综述中,我描述了基于组学和 GWAS 的综合分析的成功案例,讨论了当前多组学分析的局限性,并对未来的综合研究提供了展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验