Suppr超能文献

哺乳动物细胞中线粒体呼吸超级复合物:结构与功能作用。

Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role.

机构信息

Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA.

Department of Biochemistry, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.

出版信息

J Mol Med (Berl). 2021 Jan;99(1):57-73. doi: 10.1007/s00109-020-02004-8. Epub 2020 Nov 17.

Abstract

Mitochondria are recognized as the main source of ATP to meet the energy demands of the cell. ATP production occurs by oxidative phosphorylation when electrons are transported through the electron transport chain (ETC) complexes and develop the proton motive force across the inner mitochondrial membrane that is used for ATP synthesis. Studies since the 1960s have been concentrated on the two models of structural organization of ETC complexes known as "solid-state" and "fluid-state" models. However, advanced new techniques such as blue-native gel electrophoresis, mass spectroscopy, and cryogenic electron microscopy for analysis of macromolecular protein complexes provided new data in favor of the solid-state model. According to this model, individual ETC complexes are assembled into macromolecular structures known as respiratory supercomplexes (SCs). A large number of studies over the last 20 years proposed the potential role of SCs to facilitate substrate channeling, maintain the integrity of individual ETC complexes, reduce electron leakage and production of reactive oxygen species, and prevent excessive and random aggregation of proteins in the inner mitochondrial membrane. However, many other studies have challenged the proposed functional role of SCs. Recently, a third model known as the "plasticity" model was proposed that partly reconciles both "solid-state" and "fluid-state" models. According to the "plasticity" model, respiratory SCs can co-exist with the individual ETC complexes. To date, the physiological role of SCs remains unknown, although several studies using tissue samples of patients or animal/cell models of human diseases revealed an associative link between functional changes and the disintegration of SC assembly. This review summarizes and discusses previous studies on the mechanisms and regulation of SC assembly under physiological and pathological conditions.

摘要

线粒体被认为是产生 ATP 的主要来源,以满足细胞的能量需求。当电子通过电子传递链(ETC)复合物传输并在内膜上产生质子动力时,就会发生 ATP 的产生,这就是氧化磷酸化。自 20 世纪 60 年代以来,研究一直集中在 ETC 复合物的两种结构组织模型上,即“固态”和“液态”模型。然而,先进的新技术,如用于分析大分子蛋白质复合物的蓝色非变性凝胶电泳、质谱和低温电子显微镜,提供了有利于固态模型的数据。根据该模型,单个 ETC 复合物组装成称为呼吸超复合物(SCs)的大分子结构。在过去的 20 年中,大量研究提出了 SCs 促进底物通道化、维持单个 ETC 复合物完整性、减少电子泄漏和活性氧物质的产生以及防止线粒体内膜中蛋白质过度和随机聚集的潜在作用。然而,许多其他研究对 SCs 提出的功能作用提出了质疑。最近,提出了第三种模型,称为“可塑性”模型,该模型部分协调了“固态”和“液态”模型。根据“可塑性”模型,呼吸 SCs 可以与单个 ETC 复合物共存。迄今为止,SCs 的生理作用仍然未知,尽管使用患者组织样本或人类疾病的动物/细胞模型进行的几项研究揭示了功能变化与 SC 组装解体之间的关联。这篇综述总结和讨论了在生理和病理条件下 SC 组装的机制和调节的先前研究。

相似文献

5
The assembly, regulation and function of the mitochondrial respiratory chain.线粒体呼吸链的组装、调节和功能。
Nat Rev Mol Cell Biol. 2022 Feb;23(2):141-161. doi: 10.1038/s41580-021-00415-0. Epub 2021 Oct 7.
6
Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes.线粒体呼吸超复合物的依赖心磷脂形成
Chem Phys Lipids. 2014 Apr;179:42-8. doi: 10.1016/j.chemphyslip.2013.10.012. Epub 2013 Nov 9.
8
Respiratory chain supercomplexes in the plant mitochondrial membrane.植物线粒体膜中的呼吸链超复合物
Trends Plant Sci. 2006 May;11(5):232-40. doi: 10.1016/j.tplants.2006.03.007. Epub 2006 Apr 17.
10
Architecture of active mammalian respiratory chain supercomplexes.活跃的哺乳动物呼吸链超复合物的结构
J Biol Chem. 2006 Jun 2;281(22):15370-5. doi: 10.1074/jbc.M513525200. Epub 2006 Mar 20.

引用本文的文献

本文引用的文献

4
Mitochondria in Health and Diseases.线粒体在健康与疾病中的作用
Cells. 2020 May 9;9(5):1177. doi: 10.3390/cells9051177.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验