Suppr超能文献

哺乳动物细胞中线粒体呼吸超级复合物:结构与功能作用。

Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role.

机构信息

Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA.

Department of Biochemistry, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.

出版信息

J Mol Med (Berl). 2021 Jan;99(1):57-73. doi: 10.1007/s00109-020-02004-8. Epub 2020 Nov 17.

Abstract

Mitochondria are recognized as the main source of ATP to meet the energy demands of the cell. ATP production occurs by oxidative phosphorylation when electrons are transported through the electron transport chain (ETC) complexes and develop the proton motive force across the inner mitochondrial membrane that is used for ATP synthesis. Studies since the 1960s have been concentrated on the two models of structural organization of ETC complexes known as "solid-state" and "fluid-state" models. However, advanced new techniques such as blue-native gel electrophoresis, mass spectroscopy, and cryogenic electron microscopy for analysis of macromolecular protein complexes provided new data in favor of the solid-state model. According to this model, individual ETC complexes are assembled into macromolecular structures known as respiratory supercomplexes (SCs). A large number of studies over the last 20 years proposed the potential role of SCs to facilitate substrate channeling, maintain the integrity of individual ETC complexes, reduce electron leakage and production of reactive oxygen species, and prevent excessive and random aggregation of proteins in the inner mitochondrial membrane. However, many other studies have challenged the proposed functional role of SCs. Recently, a third model known as the "plasticity" model was proposed that partly reconciles both "solid-state" and "fluid-state" models. According to the "plasticity" model, respiratory SCs can co-exist with the individual ETC complexes. To date, the physiological role of SCs remains unknown, although several studies using tissue samples of patients or animal/cell models of human diseases revealed an associative link between functional changes and the disintegration of SC assembly. This review summarizes and discusses previous studies on the mechanisms and regulation of SC assembly under physiological and pathological conditions.

摘要

线粒体被认为是产生 ATP 的主要来源,以满足细胞的能量需求。当电子通过电子传递链(ETC)复合物传输并在内膜上产生质子动力时,就会发生 ATP 的产生,这就是氧化磷酸化。自 20 世纪 60 年代以来,研究一直集中在 ETC 复合物的两种结构组织模型上,即“固态”和“液态”模型。然而,先进的新技术,如用于分析大分子蛋白质复合物的蓝色非变性凝胶电泳、质谱和低温电子显微镜,提供了有利于固态模型的数据。根据该模型,单个 ETC 复合物组装成称为呼吸超复合物(SCs)的大分子结构。在过去的 20 年中,大量研究提出了 SCs 促进底物通道化、维持单个 ETC 复合物完整性、减少电子泄漏和活性氧物质的产生以及防止线粒体内膜中蛋白质过度和随机聚集的潜在作用。然而,许多其他研究对 SCs 提出的功能作用提出了质疑。最近,提出了第三种模型,称为“可塑性”模型,该模型部分协调了“固态”和“液态”模型。根据“可塑性”模型,呼吸 SCs 可以与单个 ETC 复合物共存。迄今为止,SCs 的生理作用仍然未知,尽管使用患者组织样本或人类疾病的动物/细胞模型进行的几项研究揭示了功能变化与 SC 组装解体之间的关联。这篇综述总结和讨论了在生理和病理条件下 SC 组装的机制和调节的先前研究。

相似文献

1
Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role.
J Mol Med (Berl). 2021 Jan;99(1):57-73. doi: 10.1007/s00109-020-02004-8. Epub 2020 Nov 17.
2
Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE).
Curr Protoc Mouse Biol. 2016 Mar 1;6(1):1-14. doi: 10.1002/9780470942390.mo150182.
3
Regulation and functional role of the electron transport chain supercomplexes.
Biochem Soc Trans. 2021 Dec 17;49(6):2655-2668. doi: 10.1042/BST20210460.
4
Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain.
Nat Struct Mol Biol. 2017 Oct 5;24(10):800-808. doi: 10.1038/nsmb.3460.
5
The assembly, regulation and function of the mitochondrial respiratory chain.
Nat Rev Mol Cell Biol. 2022 Feb;23(2):141-161. doi: 10.1038/s41580-021-00415-0. Epub 2021 Oct 7.
6
Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes.
Chem Phys Lipids. 2014 Apr;179:42-8. doi: 10.1016/j.chemphyslip.2013.10.012. Epub 2013 Nov 9.
7
The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.
J Bioenerg Biomembr. 2008 Oct;40(5):419-24. doi: 10.1007/s10863-008-9167-5. Epub 2008 Oct 7.
8
Respiratory chain supercomplexes in the plant mitochondrial membrane.
Trends Plant Sci. 2006 May;11(5):232-40. doi: 10.1016/j.tplants.2006.03.007. Epub 2006 Apr 17.
10
Architecture of active mammalian respiratory chain supercomplexes.
J Biol Chem. 2006 Jun 2;281(22):15370-5. doi: 10.1074/jbc.M513525200. Epub 2006 Mar 20.

引用本文的文献

1
High-Sensitive Spatial Proteomics for Pancreatic Cancer Progression Analysis.
bioRxiv. 2025 May 5:2025.05.01.651678. doi: 10.1101/2025.05.01.651678.
3
The Pathogenesis of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency.
Biomolecules. 2025 Mar 14;15(3):416. doi: 10.3390/biom15030416.
4
DNA damage response regulator ATR licenses PINK1-mediated mitophagy.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf178.
5
6
Total cardiolipin levels in gastric and colon cancer: evaluating the prognostic potential.
Lipids Health Dis. 2025 Feb 27;24(1):76. doi: 10.1186/s12944-025-02499-5.

本文引用的文献

1
Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q.
Sci Adv. 2020 Jun 24;6(26):eaba7509. doi: 10.1126/sciadv.aba7509. eCollection 2020 Jun.
2
Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes.
EMBO J. 2020 Jul 15;39(14):e103912. doi: 10.15252/embj.2019103912. Epub 2020 Jun 8.
4
Mitochondria in Health and Diseases.
Cells. 2020 May 9;9(5):1177. doi: 10.3390/cells9051177.
5
Stable mitochondrial CICIII supercomplex interactions in reptiles versus homeothermic vertebrates.
J Exp Biol. 2020 Jun 17;223(Pt 12):jeb223776. doi: 10.1242/jeb.223776.
6
Distinct Roles of Mitochondrial HIGD1A and HIGD2A in Respiratory Complex and Supercomplex Biogenesis.
Cell Rep. 2020 May 5;31(5):107607. doi: 10.1016/j.celrep.2020.107607.
7
HIGD2A is Required for Assembly of the COX3 Module of Human Mitochondrial Complex IV.
Mol Cell Proteomics. 2020 Jul;19(7):1145-1160. doi: 10.1074/mcp.RA120.002076. Epub 2020 Apr 21.
10
Rcf1 Modulates Cytochrome Oxidase Activity Especially Under Energy-Demanding Conditions.
Front Physiol. 2020 Jan 14;10:1555. doi: 10.3389/fphys.2019.01555. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验