Department of Brain Sciences, Imperial College London, London, United Kingdom.
UK Dementia Research Institute Centre at Imperial College London, London, United Kingdom.
Magn Reson Med. 2021 May;85(5):2477-2489. doi: 10.1002/mrm.28593. Epub 2020 Nov 17.
To achieve rapid, low specific absorption rate (SAR) super-resolution imaging by exploiting the characteristic magnetization off-resonance profile in SSFP.
In the presented technique, low flip angle unbalanced SSFP imaging is used to acquire a series of images at a low nominal resolution that are then combined in a super-resolution strategy analogous to non-linear structured illumination microscopy. This is demonstrated in principle via Bloch simulations and synthetic phantoms, and the performance is quantified in terms of point-spread function (PSF) and SNR for gray and white matter from field strengths of 0.35T to 9.4T. A k-space reconstruction approach is proposed to account for B effects. This was applied to reconstruct super-resolution images from a test object at 9.4T.
Artifact-free super-resolution images were produced after incorporating sufficient preparation time for the magnetization to approach the steady state. High-resolution images of a test object were obtained at 9.4T, in the presence of considerable B inhomogeneity. For gray matter, the highest achievable resolution ranges from 3% of the acquired voxel dimension at 0.35T, to 9% at 9.4T. For white matter, this corresponds to 3% and 10%, respectively. Compared to an equivalent segmented gradient echo acquisition at the optimal flip angle, with a fixed TR of 8 ms, gray matter has up to 34% of the SNR at 9.4T while using a ×10 smaller flip angle. For white matter, this corresponds to 29% with a ×11 smaller flip angle.
This approach achieves high degrees of super-resolution enhancement with minimal RF power requirements.
利用 SSFP 中的特征磁化率离共振分布,实现快速、低特定吸收率(SAR)的超分辨率成像。
在提出的技术中,采用低翻转角不平衡 SSFP 成像以在低名义分辨率下采集一系列图像,然后以类似于非线性结构照明显微镜的超分辨率策略对这些图像进行组合。这通过 Bloch 模拟和合成体模进行了原理性证明,并根据灰阶和白质的点扩散函数(PSF)和 SNR 对 0.35T 至 9.4T 的场强进行了量化。提出了一种 k 空间重建方法来考虑 B 效应。该方法应用于从 9.4T 的测试对象重建超分辨率图像。
在为磁化达到稳态提供足够的准备时间后,生成了无伪影的超分辨率图像。在存在相当大的 B 不均匀性的情况下,在 9.4T 获得了测试对象的高分辨率图像。对于灰阶,可实现的最高分辨率范围为 0.35T 时采集体素尺寸的 3%,9.4T 时为 9%。对于白质,这分别对应于 3%和 10%。与在最佳翻转角下以固定 TR 为 8ms 的等效分段梯度回波采集相比,在 9.4T 时,灰阶的 SNR 高达 34%,而翻转角小 10 倍。对于白质,这对应于翻转角小 11 倍时的 29%。
这种方法在最小 RF 功率要求下实现了高度的超分辨率增强。