Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica, Fiocruz, Rio de Janeiro 21040-360, Brazil.
Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil.
ACS Chem Neurosci. 2020 Dec 16;11(24):4289-4300. doi: 10.1021/acschemneuro.0c00547. Epub 2020 Nov 17.
In recent years, therapeutic compounds derived from phytocannabinoids have brought renewed attention to the benefits they offer to ameliorate chronic disease symptoms. Among cannabinoids, tetrahydrocannabinol (THC) is a well-known component of the plant, whose active principles have been studied through the years. Another psychoactive phytocannabinoid, derived from liverworts , perrottetinene (PET), has created interest, especially as a pharmaceutical product and for its legal recreational use. Unfortunately, so far, the interaction mode of these compounds at the type 1 cannabinoid receptors (CB1R) binding site remains unknown, and no experimental three-dimensional structure in complex with THC or PET is available in the Protein Data Bank. Today, many computational methodologies can assist in this crusade and help unveil how these molecules bind, based on the already known pose of a structurally similar compound. In this work, we aim to elucidate the binding mode of THC and PET molecules in both and conformers, using a combination of several computational methodologies, including molecular docking, molecular dynamics, free energy calculations, and protein-energy network studies. We found that THC and PET interact similarly with the CB1R, in a different conformation depending on the considered diastereomer. We have observed that ligands adopted a half-chair conformation of the cycle ring containing the dimethyl group, assuming an axial or equatorial conformation producing a different induced fitting of the surrounding residues compared with ligands, with higher interaction energy than the conformer. For PET, we have seen that Trp-279 and Trp-356 have a marked influence on the binding. After binding, Trp-279 accommodates its side chain to better interact with the PET's terminal phenyl group, disturbing CB1R residues communication. The interaction with Trp-356 might impair the activation of CB1R and can influence the binding of PET as a partial agonist. Understanding the PET association with CB1R from a molecular perspective can offer a glimpse of preventing potential toxicological or recreational effects since it is an attractive lead for drug development with fewer side effects than -THC.
近年来,源自植物大麻素的治疗化合物引起了人们的关注,因为它们提供了缓解慢性疾病症状的益处。在大麻素中,四氢大麻酚(THC)是植物中众所周知的成分,其活性成分多年来一直受到研究。另一种源自地钱属植物的精神活性植物大麻素,即佩罗滕烯(PET),引起了人们的兴趣,尤其是作为一种药物产品和用于合法的娱乐用途。不幸的是,到目前为止,这些化合物在 1 型大麻素受体(CB1R)结合部位的相互作用模式仍然未知,并且在蛋白质数据库中没有与 THC 或 PET 复合物的实验三维结构。如今,许多计算方法可以协助这项研究,帮助揭示这些分子如何结合,基于已知道结构相似化合物的构象。在这项工作中,我们旨在阐明 THC 和 PET 分子在 和 构象中的结合模式,使用多种计算方法的组合,包括分子对接、分子动力学、自由能计算和蛋白质能量网络研究。我们发现,THC 和 PET 以不同的构象与 CB1R 相互作用,这取决于所考虑的非对映异构体。我们观察到,环中含有二甲基团的环呈半椅式构象,采用轴向或赤道构象,与 配体相比,周围残基的诱导契合产生不同,与 构象相比,相互作用能更高。对于 PET,我们已经看到色氨酸 279 和色氨酸 356 对结合有明显的影响。结合后,色氨酸 279 容纳其侧链以更好地与 PET 的末端苯基基团相互作用,干扰 CB1R 残基的通讯。与色氨酸 356 的相互作用可能会抑制 CB1R 的激活,并可能影响作为部分激动剂的 PET 的结合。从分子角度理解 PET 与 CB1R 的关联可以提供一种预防潜在的毒理学或娱乐性影响的方法,因为它是一种具有较少副作用的药物开发的有吸引力的先导化合物,比 -THC 更少。