Suppr超能文献

脂肪组织中的ABHD6调节对寒冷的耐受性和产热程序。

Adipose ABHD6 regulates tolerance to cold and thermogenic programs.

作者信息

Poursharifi Pegah, Attané Camille, Mugabo Yves, Al-Mass Anfal, Ghosh Anindya, Schmitt Clémence, Zhao Shangang, Guida Julian, Lussier Roxane, Erb Heidi, Chenier Isabelle, Peyot Marie-Line, Joly Erik, Noll Christophe, Carpentier André C, Madiraju S R Murthy, Prentki Marc

机构信息

Departments of Nutrition, Biochemistry, and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.

Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.

出版信息

JCI Insight. 2020 Dec 17;5(24):140294. doi: 10.1172/jci.insight.140294.

Abstract

Enhanced energy expenditure in brown (BAT) and white adipose tissues (WAT) can be therapeutic against metabolic diseases. We examined the thermogenic role of adipose α/β-hydrolase domain 6 (ABHD6), which hydrolyzes monoacylglycerol (MAG), by employing adipose-specific ABHD6-KO mice. Control and KO mice showed similar phenotypes at room temperature and thermoneutral conditions. However, KO mice were resistant to hypothermia, which can be accounted for by the simultaneously increased lipolysis and lipogenesis of the thermogenic glycerolipid/free fatty acid (GL/FFA) cycle in visceral fat, despite unaltered uncoupling protein 1 expression. Upon cold stress, nuclear 2-MAG levels increased in visceral WAT of the KO mice. Evidence is provided that 2-MAG causes activation of PPARα in white adipocytes, leading to elevated expression and activity of GL/FFA cycle enzymes. In the ABHD6-ablated BAT, glucose and oxidative metabolism were elevated upon cold induction, without changes in GL/FFA cycle and lipid turnover. Moreover, response to in vivo β3-adrenergic stimulation was comparable between KO and control mice. Our data reveal a MAG/PPARα/GL/FFA cycling metabolic signaling network in visceral adipose tissue, which contributes to cold tolerance, and that adipose ABHD6 is a negative modulator of adaptive thermogenesis.

摘要

棕色脂肪组织(BAT)和白色脂肪组织(WAT)中增强的能量消耗对代谢性疾病具有治疗作用。我们通过使用脂肪特异性ABHD6基因敲除小鼠,研究了脂肪α/β水解酶结构域6(ABHD6)的产热作用,该酶可水解单酰甘油(MAG)。对照小鼠和基因敲除小鼠在室温及热中性条件下表现出相似的表型。然而,基因敲除小鼠对体温过低具有抗性,这可以通过内脏脂肪中产热甘油olipid/游离脂肪酸(GL/FFA)循环的脂解作用和脂肪生成同时增加来解释,尽管解偶联蛋白1的表达未改变。在冷应激下,基因敲除小鼠内脏WAT中的核2-MAG水平升高。有证据表明,2-MAG可导致白色脂肪细胞中PPARα的激活,从而导致GL/FFA循环酶的表达和活性升高。在ABHD6缺失的BAT中,冷诱导后葡萄糖和氧化代谢升高,而GL/FFA循环和脂质周转没有变化。此外,基因敲除小鼠和对照小鼠对体内β3-肾上腺素能刺激的反应相当。我们的数据揭示了内脏脂肪组织中一个MAG/PPARα/GL/FFA循环代谢信号网络,该网络有助于耐寒性,并且脂肪ABHD6是适应性产热的负调节因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ee2/7819748/076f7c9ca88a/jciinsight-5-140294-g033.jpg

相似文献

1
Adipose ABHD6 regulates tolerance to cold and thermogenic programs.
JCI Insight. 2020 Dec 17;5(24):140294. doi: 10.1172/jci.insight.140294.
2
α/β-Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes.
Cell Rep. 2016 Mar 29;14(12):2872-88. doi: 10.1016/j.celrep.2016.02.076. Epub 2016 Mar 17.
3
14-3-3ζ mediates an alternative, non-thermogenic mechanism in male mice to reduce heat loss and improve cold tolerance.
Mol Metab. 2020 Nov;41:101052. doi: 10.1016/j.molmet.2020.101052. Epub 2020 Jul 12.
5
CD38 downregulation modulates NAD and NADP(H) levels in thermogenic adipose tissues.
Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Jan;1866(1):158819. doi: 10.1016/j.bbalip.2020.158819. Epub 2020 Sep 30.
6
PPARγ agonist rosiglitazone switches fuel preference to lipids in promoting thermogenesis under cold exposure in C57BL/6 mice.
J Proteomics. 2018 Mar 30;176:24-36. doi: 10.1016/j.jprot.2018.01.010. Epub 2018 Feb 3.
7
Rorα deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue.
Am J Physiol Endocrinol Metab. 2015 Jan 15;308(2):E159-71. doi: 10.1152/ajpendo.00056.2014. Epub 2014 Nov 25.
8
Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance.
Mol Metab. 2016 Sep 28;5(12):1149-1161. doi: 10.1016/j.molmet.2016.09.009. eCollection 2016 Dec.
9
Brown adipose tissue lipoprotein and glucose disposal is not determined by thermogenesis in uncoupling protein 1-deficient mice.
J Lipid Res. 2020 Nov;61(11):1377-1389. doi: 10.1194/jlr.RA119000455. Epub 2020 Aug 7.
10
STAT5 is required for lipid breakdown and beta-adrenergic responsiveness of brown adipose tissue.
Mol Metab. 2020 Oct;40:101026. doi: 10.1016/j.molmet.2020.101026. Epub 2020 May 28.

引用本文的文献

1
FATP1-mediated fatty acid uptake in renal tubular cells as a countermeasure for hypothermia.
J Mol Med (Berl). 2025 Apr;103(4):403-419. doi: 10.1007/s00109-025-02525-0. Epub 2025 Mar 5.
2
Activin E is a new guardian protecting against hepatic steatosis via inhibiting lipolysis in white adipose tissue.
Exp Mol Med. 2025 Feb;57(2):466-477. doi: 10.1038/s12276-025-01403-6. Epub 2025 Feb 13.
3
Exercise-induced methylation of the Serhl2 promoter and implication for lipid metabolism in rat skeletal muscle.
Mol Metab. 2025 Feb;92:102081. doi: 10.1016/j.molmet.2024.102081. Epub 2024 Dec 8.
4
Adipocyte Angptl8 deletion improves glucose and energy metabolism and obesity associated inflammation in mice.
iScience. 2024 Nov 9;27(12):111292. doi: 10.1016/j.isci.2024.111292. eCollection 2024 Dec 20.
5
Futile lipid cycling: from biochemistry to physiology.
Nat Metab. 2024 May;6(5):808-824. doi: 10.1038/s42255-024-01003-0. Epub 2024 Mar 8.
9
α/β-Hydrolase Domain-Containing 6 (ABHD6)- A Multifunctional Lipid Hydrolase.
Metabolites. 2022 Aug 18;12(8):761. doi: 10.3390/metabo12080761.
10
Metabolic cycles and signals for insulin secretion.
Cell Metab. 2022 Jul 5;34(7):947-968. doi: 10.1016/j.cmet.2022.06.003. Epub 2022 Jun 20.

本文引用的文献

1
Regulation of adipocyte thermogenesis: mechanisms controlling obesity.
FEBS J. 2020 Aug;287(16):3370-3385. doi: 10.1111/febs.15331. Epub 2020 Apr 27.
2
Shared PPARα/γ Target Genes Regulate Brown Adipocyte Thermogenic Function.
Cell Rep. 2020 Mar 3;30(9):3079-3091.e5. doi: 10.1016/j.celrep.2020.02.032.
3
The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue.
FASEB J. 2019 Dec;33(12):13267-13279. doi: 10.1096/fj.201900909RR. Epub 2019 Sep 18.
4
New Advances in Adaptive Thermogenesis: UCP1 and Beyond.
Cell Metab. 2019 Jan 8;29(1):27-37. doi: 10.1016/j.cmet.2018.11.002. Epub 2018 Nov 29.
5
The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets.
Cell. 2018 Jul 26;174(3):700-715.e18. doi: 10.1016/j.cell.2018.05.047. Epub 2018 Jun 21.
6
Insights into brown adipose tissue evolution and function from non-model organisms.
J Exp Biol. 2018 Mar 7;221(Pt Suppl 1):jeb169425. doi: 10.1242/jeb.169425.
7
White and beige adipocytes: are they metabolically distinct?
Horm Mol Biol Clin Investig. 2018 Feb 21;33(2):/j/hmbci.2018.33.issue-2/hmbci-2018-0003/hmbci-2018-0003.xml. doi: 10.1515/hmbci-2018-0003.
8
The Peroxisome Proliferator-Activated Receptor α is dispensable for cold-induced adipose tissue browning in mice.
Mol Metab. 2018 Apr;10:39-54. doi: 10.1016/j.molmet.2018.01.023. Epub 2018 Feb 9.
10
Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease.
Nat Rev Endocrinol. 2018 Feb;14(2):77-87. doi: 10.1038/nrendo.2017.132. Epub 2017 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验