Suppr超能文献

视黄酸信号在骨骼发育中的作用:为预测毒理学构建系统。

Retinoid signaling in skeletal development: Scoping the system for predictive toxicology.

机构信息

Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.

Leidos, Contractor to CCTE, Research Triangle Park, NC, 27711, United States.

出版信息

Reprod Toxicol. 2021 Jan;99:109-130. doi: 10.1016/j.reprotox.2020.10.014. Epub 2020 Nov 14.

Abstract

All-trans retinoic acid (ATRA), the biologically active form of vitamin A, is instrumental in regulating the patterning and specification of the vertebrate embryo. Various animal models demonstrate adverse developmental phenotypes following experimental retinoid depletion or excess during pregnancy. Windows of vulnerability for altered skeletal patterning coincide with early specification of the body plan (gastrulation) and regional specification of precursor cell populations forming the facial skeleton (cranial neural crest), vertebral column (somites), and limbs (lateral plate mesoderm) during organogenesis. A common theme in physiological roles of ATRA signaling is mutual antagonism with FGF signaling. Consequences of genetic errors or environmental disruption of retinoid signaling include stage- and region-specific homeotic transformations to severe deficiencies for various skeletal elements. This review derives from an annex in Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97) to support recommendations regarding assay development for the retinoid system and the use of resulting data in a regulatory context for developmental and reproductive toxicity (DART) testing.

摘要

全反式视黄酸(ATRA)是维生素 A 的生物活性形式,在调节脊椎动物胚胎的模式形成和特化中起着重要作用。各种动物模型表明,在怀孕期间进行实验性视黄酸耗竭或过量会导致不良的发育表型。骨骼模式改变的脆弱窗口与身体计划的早期特化(原肠胚形成)以及形成面部骨骼(颅神经嵴)、脊柱(体节)和肢体(侧板中胚层)的前体细胞群的区域特化相吻合器官发生。ATRA 信号转导的生理作用的一个共同主题是与 FGF 信号转导的相互拮抗。视黄酸信号转导的遗传错误或环境破坏的后果包括各种骨骼元素的阶段和区域特异性同源转化,严重缺乏。这篇综述源自 OECD 测试指南计划(项目 4.97)详细审查报告(DRP)中的附件,以支持关于建立视黄酸系统检测方法的建议,并在发育和生殖毒性(DART)测试的监管背景下使用由此产生的数据。

相似文献

1
Retinoid signaling in skeletal development: Scoping the system for predictive toxicology.
Reprod Toxicol. 2021 Jan;99:109-130. doi: 10.1016/j.reprotox.2020.10.014. Epub 2020 Nov 14.
2
Revisiting the role of retinoid signaling in skeletal development.
Birth Defects Res C Embryo Today. 2003 May;69(2):156-73. doi: 10.1002/bdrc.10010.
3
Retinoid signaling is required to complete the vertebrate cardiac left/right asymmetry pathway.
Dev Biol. 2000 Jul 15;223(2):323-38. doi: 10.1006/dbio.2000.9754.
5
Retinoid signalling and axial patterning during early vertebrate embryogenesis.
Cell Mol Life Sci. 1997 Apr;53(4):339-49. doi: 10.1007/pl00000610.
7
The role of vitamin A and retinoic acid receptor signaling in post-natal maintenance of bone.
J Steroid Biochem Mol Biol. 2016 Jan;155(Pt A):135-46. doi: 10.1016/j.jsbmb.2015.09.036. Epub 2015 Nov 4.
8
A novel role for retinoids in patterning the avian forebrain during presomite stages.
Development. 2003 May;130(10):2039-50. doi: 10.1242/dev.00423.
9
Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation.
PLoS Biol. 2012;10(10):e1001415. doi: 10.1371/journal.pbio.1001415. Epub 2012 Oct 30.
10
Receptor-selective retinoid agonists and teratogenic activity.
Drug Metab Rev. 1996 Feb-May;28(1-2):105-19. doi: 10.3109/03602539608993994.

引用本文的文献

1
Retinoic acid signaling and metabolism in heart failure.
Am J Physiol Heart Circ Physiol. 2025 Apr 1;328(4):H792-H813. doi: 10.1152/ajpheart.00871.2024. Epub 2025 Feb 11.
2
Development and validation of CYP26A1 inhibition assay for high-throughput screening.
Biotechnol J. 2024 Jun;19(6):e2300659. doi: 10.1002/biot.202300659.
3
Scientific opinion on the tolerable upper intake level for preformed vitamin A and β-carotene.
EFSA J. 2024 Jun 6;22(6):e8814. doi: 10.2903/j.efsa.2024.8814. eCollection 2024 Jun.
4
Computational model for fetal skeletal defects potentially linked to disruption of retinoic acid signaling.
Front Pharmacol. 2022 Sep 6;13:971296. doi: 10.3389/fphar.2022.971296. eCollection 2022.
6
AOP Key Event Relationship report: Linking decreased retinoic acid levels with disrupted meiosis in developing oocytes.
Curr Res Toxicol. 2022 Mar 18;3:100069. doi: 10.1016/j.crtox.2022.100069. eCollection 2022.
7
Toward better assessments of developmental toxicity using stem cell-based in vitro embryogenesis models.
Birth Defects Res. 2022 Oct 1;114(16):972-982. doi: 10.1002/bdr2.1984. Epub 2022 Jan 31.

本文引用的文献

2
Molecular characterization of a toxicological tipping point during human stem cell differentiation.
Reprod Toxicol. 2020 Jan;91:1-13. doi: 10.1016/j.reprotox.2019.10.001. Epub 2019 Oct 7.
3
Characterizing cleft palate toxicants using ToxCast data, chemical structure, and the biomedical literature.
Birth Defects Res. 2020 Jan 1;112(1):19-39. doi: 10.1002/bdr2.1581. Epub 2019 Aug 30.
4
Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases.
Pharmacol Ther. 2019 Dec;204:107400. doi: 10.1016/j.pharmthera.2019.107400. Epub 2019 Aug 13.
5
Retinoic acid signaling pathways.
Development. 2019 Jul 4;146(13):dev167502. doi: 10.1242/dev.167502.
7
Vitamin A at the interface of host-commensal-pathogen interactions.
PLoS Pathog. 2019 Jun 6;15(6):e1007750. doi: 10.1371/journal.ppat.1007750. eCollection 2019 Jun.
9
Genomic and non-genomic pathways are both crucial for peak induction of neurite outgrowth by retinoids.
Cell Commun Signal. 2019 May 2;17(1):40. doi: 10.1186/s12964-019-0352-4.
10
Alternative retinoid X receptor (RXR) ligands.
Mol Cell Endocrinol. 2019 Jul 1;491:110436. doi: 10.1016/j.mce.2019.04.016. Epub 2019 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验