Suppr超能文献

基于机器视觉的小麦生长分析:机遇与挑战。

Growth Analysis of Wheat Using Machine Vision: Opportunities and Challenges.

机构信息

Department of Agronomy, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.

Department of Plant Production, Jordan University of Science and Technology, Ar Ramtha 3030, Jordan.

出版信息

Sensors (Basel). 2020 Nov 14;20(22):6501. doi: 10.3390/s20226501.

Abstract

Crop growth analysis is used for the assessment of crop yield potential and stress tolerance. Capturing continuous plant growth has been a goal since the early 20th century; however, this requires a large number of replicates and multiple destructive measurements. The use of machine vision techniques holds promise as a fast, reliable, and non-destructive method to analyze crop growth based on surrogates for plant traits and growth parameters. We used machine vision to infer plant size along with destructive measurements at multiple time points to analyze growth parameters of spring wheat genotypes. We measured side-projected area by machine vision and RGB imaging. Three traits, i.e., biomass (BIO), leaf dry weight (LDW), and leaf area (LA), were measured using low-throughput techniques. However, RGB imaging was used to produce side projected area (SPA) as the high throughput trait. Significant effects of time point and genotype on BIO, LDW, LA, and SPA were observed. SPA was a robust predictor of leaf area, leaf dry weight, and biomass. Relative growth rate estimated using SPA was a robust predictor of the relative growth rate measured using biomass and leaf dry weight. Large numbers of entries can be assessed by this method for genetic mapping projects to produce a continuous growth curve with fewer replicates.

摘要

作物生长分析用于评估作物的产量潜力和抗胁迫能力。自 20 世纪初以来,人们一直致力于连续监测植物的生长情况;然而,这需要大量的重复和多次破坏性测量。机器视觉技术有望成为一种快速、可靠且非破坏性的方法,可基于植物性状和生长参数的替代物来分析作物的生长情况。我们使用机器视觉来推断植物的大小,并在多个时间点进行破坏性测量,以分析春小麦基因型的生长参数。我们使用机器视觉和 RGB 成像来测量侧投影面积。使用低通量技术测量了三个性状,即生物量 (BIO)、叶片干重 (LDW) 和叶面积 (LA)。然而,使用 RGB 成像来生成高通量性状的侧投影面积 (SPA)。时间点和基因型对 BIO、LDW、LA 和 SPA 的显著影响。SPA 是叶面积、叶片干重和生物量的可靠预测因子。使用 SPA 估计的相对生长率是使用生物量和叶片干重测量的相对生长率的可靠预测因子。该方法可用于大量样本的遗传图谱绘制项目,以产生具有较少重复的连续生长曲线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4490/7696412/50af75cff05b/sensors-20-06501-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验