Suppr超能文献

AF-SSD:一种用于高空间分辨率遥感影像的准确快速单阶段目标检测器。

AF-SSD: An Accurate and Fast Single Shot Detector for High Spatial Remote Sensing Imagery.

作者信息

Yin Ruihong, Zhao Wei, Fan Xudong, Yin Yongfeng

机构信息

School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.

School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China.

出版信息

Sensors (Basel). 2020 Nov 15;20(22):6530. doi: 10.3390/s20226530.

Abstract

There are a large number of studies on geospatial object detection. However, many existing methods only focus on either accuracy or speed. Methods with both fast speed and high accuracy are of great importance in some scenes, like search and rescue, and military information acquisition. In remote sensing images, there are some targets that are small and have few textures and low contrast compared with the background, which impose challenges on object detection. In this paper, we propose an accurate and fast single shot detector (AF-SSD) for high spatial remote sensing imagery to solve these problems. Firstly, we design a lightweight backbone to reduce the number of trainable parameters of the network. In this lightweight backbone, we also use some wide and deep convolutional blocks to extract more semantic information and keep the high detection precision. Secondly, a novel encoding-decoding module is employed to detect small targets accurately. With up-sampling and summation operations, the encoding-decoding module can add strong high-level semantic information to low-level features. Thirdly, we design a cascade structure with spatial and channel attention modules for targets with low contrast (named low-contrast targets) and few textures (named few-texture targets). The spatial attention module can extract long-range features for few-texture targets. By weighting each channel of a feature map, the channel attention module can guide the network to concentrate on easily identifiable features for low-contrast and few-texture targets. The experimental results on the NWPU VHR-10 dataset show that our proposed AF-SSD achieves superior detection performance: parameters 5.7 M, mAP 88.7%, and 0.035 s per image on average on an NVIDIA GTX-1080Ti GPU.

摘要

关于地理空间目标检测有大量的研究。然而,许多现有方法仅关注准确性或速度其中之一。在诸如搜索救援和军事信息获取等一些场景中,兼具快速速度和高精度的方法非常重要。在遥感图像中,存在一些目标较小、纹理较少且与背景对比度低的情况,这给目标检测带来了挑战。在本文中,我们提出了一种用于高空间分辨率遥感图像的准确快速单阶段检测器(AF-SSD)来解决这些问题。首先,我们设计了一个轻量级主干网络以减少网络中可训练参数的数量。在这个轻量级主干网络中,我们还使用了一些宽而深的卷积块来提取更多语义信息并保持高检测精度。其次,采用了一种新颖的编解码模块来准确检测小目标。通过上采样和求和操作,编解码模块可以将强大的高级语义信息添加到低级特征中。第三,我们为低对比度(称为低对比度目标)和少纹理(称为少纹理目标)的目标设计了一种带有空间和通道注意力模块的级联结构。空间注意力模块可以为少纹理目标提取远距离特征。通过对特征图的每个通道进行加权,通道注意力模块可以引导网络专注于低对比度和少纹理目标的易于识别的特征。在NWPU VHR-10数据集上的实验结果表明,我们提出的AF-SSD实现了卓越的检测性能:在NVIDIA GTX-1080Ti GPU上,参数为5.7M,平均mAP为88.7%,每张图像平均耗时0.035秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2d/7697322/09e6ed632cc7/sensors-20-06530-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验