Suppr超能文献

理解精神病学中的语言异常及相关临床标志物:计算方法的前景。

Understanding Language Abnormalities and Associated Clinical Markers in Psychosis: The Promise of Computational Methods.

机构信息

Department of Linguistics, Northwestern University, Evanston, IL.

Department of Psychology, Northwestern University, Evanston, IL.

出版信息

Schizophr Bull. 2021 Mar 16;47(2):344-362. doi: 10.1093/schbul/sbaa141.

Abstract

The language and speech of individuals with psychosis reflect their impairments in cognition and motor processes. These language disturbances can be used to identify individuals with and at high risk for psychosis, as well as help track and predict symptom progression, allowing for early intervention and improved outcomes. However, current methods of language assessment-manual annotations and/or clinical rating scales-are time intensive, expensive, subject to bias, and difficult to administer on a wide scale, limiting this area from reaching its full potential. Computational methods that can automatically perform linguistic analysis have started to be applied to this problem and could drastically improve our ability to use linguistic information clinically. In this article, we first review how these automated, computational methods work and how they have been applied to the field of psychosis. We show that across domains, these methods have captured differences between individuals with psychosis and healthy controls and can classify individuals with high accuracies, demonstrating the promise of these methods. We then consider the obstacles that need to be overcome before these methods can play a significant role in the clinical process and provide suggestions for how the field should address them. In particular, while much of the work thus far has focused on demonstrating the successes of these methods, we argue that a better understanding of when and why these models fail will be crucial toward ensuring these methods reach their potential in the field of psychosis.

摘要

个体的语言和言语反映了他们在认知和运动过程中的障碍。这些语言障碍可用于识别患有精神病和处于高危状态的个体,以及帮助跟踪和预测症状进展,从而实现早期干预和改善结果。然而,当前的语言评估方法——手动注释和/或临床评分量表——既费时、昂贵,又容易受到偏见的影响,并且难以大规模实施,限制了该领域发挥其全部潜力。能够自动执行语言分析的计算方法已开始应用于该问题,这可能会极大地提高我们在临床中使用语言信息的能力。在本文中,我们首先回顾了这些自动化、计算方法的工作原理,以及它们在精神病学领域的应用。我们表明,在各个领域,这些方法都捕捉到了精神病患者和健康对照组之间的差异,并且可以以高精度对个体进行分类,这证明了这些方法的潜力。然后,我们考虑了在这些方法能够在临床过程中发挥重要作用之前需要克服的障碍,并就该领域应如何解决这些问题提出了建议。特别是,虽然迄今为止的大部分工作都集中在展示这些方法的成功之处,但我们认为,更好地理解这些模型何时以及为何失败对于确保这些方法在精神病学领域发挥其潜力至关重要。

相似文献

3
On the dimensionality of formal thought disorder.论形式思维障碍的维度
Schizophr Res. 2019 Aug;210:311-312. doi: 10.1016/j.schres.2019.06.018. Epub 2019 Jun 28.
5
Psychotic speech: a neurolinguistic perspective.精神病性言语:一种神经语言学视角
Aust N Z J Psychiatry. 1994 Jun;28(2):229-38. doi: 10.1080/00048679409075633.
6
Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective.精神病性障碍的认知缺陷:终身视角。
Neuropsychol Rev. 2018 Dec;28(4):509-533. doi: 10.1007/s11065-018-9388-2. Epub 2018 Oct 20.

引用本文的文献

2
3
Rationale and Challenges for a New Instrument for Remote Measurement of Negative Symptoms.一种新型阴性症状远程测量工具的原理与挑战
Schizophr Bull Open. 2024 Oct 18;5(1):sgae027. doi: 10.1093/schizbullopen/sgae027. eCollection 2024 Jan.

本文引用的文献

4
Racial disparities in automated speech recognition.种族差异与自动化语音识别。
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7684-7689. doi: 10.1073/pnas.1915768117. Epub 2020 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验