Suppr超能文献

3DCD:用于未知视频变化检测的场景无关端到端时空特征学习框架

3DCD: Scene Independent End-to-End Spatiotemporal Feature Learning Framework for Change Detection in Unseen Videos.

作者信息

Mandal Murari, Dhar Vansh, Mishra Abhishek, Vipparthi Santosh Kumar, Abdel-Mottaleb Mohamed

出版信息

IEEE Trans Image Process. 2021;30:546-558. doi: 10.1109/TIP.2020.3037472. Epub 2020 Nov 24.

Abstract

Change detection is an elementary task in computer vision and video processing applications. Recently, a number of supervised methods based on convolutional neural networks have reported high performance over the benchmark dataset. However, their success depends upon the availability of certain proportions of annotated frames from test video during training. Thus, their performance on completely unseen videos or scene independent setup is undocumented in the literature. In this work, we present a scene independent evaluation (SIE) framework to test the supervised methods in completely unseen videos to obtain generalized models for change detection. In addition, a scene dependent evaluation (SDE) is also performed to document the comparative analysis with the existing approaches. We propose a fast (speed-25 fps) and lightweight (0.13 million parameters, model size-1.16 MB) end-to-end 3D-CNN based change detection network (3DCD) with multiple spatiotemporal learning blocks. The proposed 3DCD consists of a gradual reductionist block for background estimation from past temporal history. It also enables motion saliency estimation, multi-schematic feature encoding-decoding, and finally foreground segmentation through several modular blocks. The proposed 3DCD outperforms the existing state-of-the-art approaches evaluated in both SIE and SDE setup over the benchmark CDnet 2014, LASIESTA and SBMI2015 datasets. To the best of our knowledge, this is a first attempt to present results in clearly defined SDE and SIE setups in three change detection datasets.

摘要

变化检测是计算机视觉和视频处理应用中的一项基本任务。最近,一些基于卷积神经网络的监督方法在基准数据集上取得了高性能。然而,它们的成功依赖于训练期间从测试视频中获取一定比例的带注释帧。因此,它们在完全未见过的视频或场景独立设置上的性能在文献中尚无记载。在这项工作中,我们提出了一个场景独立评估(SIE)框架,用于在完全未见过的视频中测试监督方法,以获得用于变化检测的通用模型。此外,还进行了场景依赖评估(SDE),以记录与现有方法的对比分析。我们提出了一种快速(速度为25帧/秒)且轻量级(13万个参数,模型大小为1.16MB)的基于端到端3D-CNN的变化检测网络(3DCD),它具有多个时空学习块。所提出的3DCD包括一个用于从过去时间历史中估计背景的渐进简约块。它还能够进行运动显著性估计、多模式特征编码-解码,最后通过几个模块化块进行前景分割。在所提出的3DCD在基准CDnet 2014、LASIESTA和SBMI2015数据集的SIE和SDE设置中评估时,优于现有最先进的方法。据我们所知,这是首次尝试在三个变化检测数据集中在明确界定的SDE和SIE设置中呈现结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验