Suppr超能文献

用于前景检测的具有混合损失的U-Net性能分析

Performance analysis of U-Net with hybrid loss for foreground detection.

作者信息

Kalsotra Rudrika, Arora Sakshi

机构信息

Department of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, 182320 India.

出版信息

Multimed Syst. 2023;29(2):771-786. doi: 10.1007/s00530-022-01014-5. Epub 2022 Nov 8.

Abstract

With the latest developments in deep neural networks, the convolutional neural network (CNN) has made considerable progress in the area of foreground detection. However, the top-rank background subtraction algorithms for foreground detection still have many shortcomings. It is challenging to extract the true foreground against complex background. To tackle the bottleneck, we propose a hybrid loss-assisted U-Net framework for foreground detection. A proposed deep learning model integrates transfer learning and hybrid loss for better feature representation and faster model convergence. The core idea is to incorporate reference background image and change detection mask in the learning network. Furthermore, we empirically investigate the potential of hybrid loss over single loss function. The advantages of two significant loss functions are combined to tackle the class imbalance problem in foreground detection. The proposed technique demonstrates its effectiveness on standard datasets and performs better than the top-rank methods in challenging environment. Moreover, experiments on unseen videos also confirm the efficacy of proposed method.

摘要

随着深度神经网络的最新发展,卷积神经网络(CNN)在前景检测领域取得了显著进展。然而,用于前景检测的顶级背景减除算法仍然存在许多缺点。在复杂背景下提取真实前景具有挑战性。为了解决这一瓶颈,我们提出了一种用于前景检测的混合损失辅助U-Net框架。所提出的深度学习模型集成了迁移学习和混合损失,以实现更好的特征表示和更快的模型收敛。核心思想是将参考背景图像和变化检测掩码纳入学习网络。此外,我们通过实验研究了混合损失相对于单一损失函数的潜力。将两种重要损失函数的优点结合起来,以解决前景检测中的类别不平衡问题。所提出的技术在标准数据集上证明了其有效性,并且在具有挑战性的环境中比顶级方法表现更好。此外,对未见视频的实验也证实了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab18/9641683/375e56c57480/530_2022_1014_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验