Suppr超能文献

基于 LC-QTOF-MS 和网络分析鉴定植物药有效及风险化合物的策略:以银杏制剂为例。

A strategy for identifying effective and risk compounds of botanical drugs with LC-QTOF-MS and network analysis: A case study of Ginkgo biloba preparation.

机构信息

College of Pharmaceutical Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.

College of Pharmaceutical Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.

出版信息

J Pharm Biomed Anal. 2021 Jan 30;193:113759. doi: 10.1016/j.jpba.2020.113759. Epub 2020 Nov 9.

Abstract

Botanical drugs have unique advantages in the treatment of complex diseases. In order to ensure the efficacy and safety of botanical drugs, ascertaining the effective and risk compounds is quite necessary. However, the conventional identification method is laborious, time-consuming, and inefficient. In this work, a 3-steps strategy was presented to rapidly identify the effective and risk compounds of botanical drugs, and a Ginkgo biloba preparation, Shu-Xue-Ning injection (SXNI), was taken as a case study. Firstly, mass spectral molecular networking was used to rapidly identify the compounds of SXNI. Secondly, three networks (i.e. the compound-target network, the indication-related biomolecule network, and the adverse drug reaction-related biomolecule network) are constructed. Finally, a novel network analysis algorithm was used to predict the effective and risk compounds in SXNI. By this strategy, a total of 138 compounds were identified including the firstly reported terpenoid glycosides and lignan glycosides. Among them 71 compounds were predicted as effective ones, and 42 compounds as risk ones. Especially, 31 compounds relevant to both efficacy and safety should be scientifically controlled during manufacturing. In addition, ten pathways were enriched to preliminarily explain the action mechanism of SXNI. This strategy for MS data analysis can be applied to provide important basis for the manufacturing and quality control, as well as valuable points for research on the pharmacological mechanisms of botanical drugs.

摘要

植物药在治疗复杂疾病方面具有独特的优势。为了确保植物药的疗效和安全性,确定有效和风险化合物是非常必要的。然而,传统的鉴定方法既费力、耗时又低效。在这项工作中,提出了一种三步策略,用于快速鉴定植物药的有效和风险化合物,并以银杏叶制剂舒血宁注射液(SXNI)为例进行研究。首先,利用质谱分子网络快速鉴定 SXNI 的化合物。其次,构建了三个网络(即化合物-靶标网络、适应证相关生物分子网络和不良反应相关生物分子网络)。最后,采用一种新的网络分析算法来预测 SXNI 中的有效和风险化合物。通过该策略,共鉴定出 138 种化合物,包括首次报道的萜类糖苷和木脂素糖苷。其中 71 种化合物被预测为有效成分,42 种化合物为风险成分。特别是,在制造过程中应科学控制与疗效和安全性相关的 31 种化合物。此外,还富集了 10 条途径,初步解释了 SXNI 的作用机制。这种用于 MS 数据分析的策略可以为制造和质量控制提供重要依据,并为植物药的药理机制研究提供有价值的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验