Suppr超能文献

跨物种的化学敏感性外推。

Cross-species extrapolation of chemical sensitivity.

机构信息

Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.

Department of Animal and Plant Sciences, The University of Sheffield, Alfred Denny Building, Western Bank, S10 2TN Sheffield, United Kingdom.

出版信息

Sci Total Environ. 2021 Jan 20;753:141800. doi: 10.1016/j.scitotenv.2020.141800. Epub 2020 Aug 19.

Abstract

Ecosystems are usually populated by many species. Each of these species carries the potential to show a different sensitivity towards all of the numerous chemical compounds that can be present in their environment. Since experimentally testing all possible species-chemical combinations is impossible, the ecological risk assessment of chemicals largely depends on cross-species extrapolation approaches. This review overviews currently existing cross-species extrapolation methodologies, and discusses i) how species sensitivity could be described, ii) which predictors might be useful for explaining differences in species sensitivity, and iii) which statistical considerations are important. We argue that risk assessment can benefit most from modelling approaches when sensitivity is described based on ecologically relevant and robust effects. Additionally, specific attention should be paid to heterogeneity of the training data (e.g. exposure duration, pH, temperature), since this strongly influences the reliability of the resulting models. Regarding which predictors are useful for explaining differences in species sensitivity, we review interspecies-correlation, relatedness-based, traits-based, and genomic-based extrapolation methods, describing the amount of mechanistic information the predictors contain, the amount of input data the models require, and the extent to which the different methods provide protection for ecological entities. We develop a conceptual framework, incorporating the strengths of each of the methods described. Finally, the discussion of statistical considerations reveals that regardless of the method used, statistically significant models can be found, although the usefulness, applicability, and understanding of these models varies considerably. We therefore recommend publication of scientific code along with scientific studies to simultaneously clarify modelling choices and enable elaboration on existing work. In general, this review specifies the data requirements of different cross-species extrapolation methods, aiming to make regulators and publishers more aware that access to raw- and meta-data needs to be improved to make future cross-species extrapolation efforts successful, enabling their integration into the regulatory environment.

摘要

生态系统通常由许多物种组成。这些物种中的每一种都有可能对其环境中存在的众多化学化合物表现出不同的敏感性。由于实验测试所有可能的物种-化学组合是不可能的,因此化学物质的生态风险评估在很大程度上依赖于跨物种外推方法。本综述概述了当前现有的跨物种外推方法,并讨论了:i)如何描述物种敏感性,ii)哪些预测因子可能有助于解释物种敏感性的差异,以及 iii)哪些统计考虑因素很重要。我们认为,当基于具有生态相关性和稳健性的效应来描述敏感性时,风险评估最能受益于建模方法。此外,应该特别注意训练数据的异质性(例如暴露持续时间、pH 值、温度),因为这会强烈影响得出的模型的可靠性。关于哪些预测因子有助于解释物种敏感性的差异,我们综述了种间相关性、亲缘关系、基于特征和基于基因组的外推方法,描述了预测因子包含的机制信息的数量、模型所需的输入数据的数量,以及不同方法在多大程度上为生态实体提供保护。我们开发了一个概念框架,纳入了所描述方法的优势。最后,对统计考虑因素的讨论表明,无论使用哪种方法,都可以找到具有统计学意义的模型,尽管这些模型的有用性、适用性和理解程度有很大差异。因此,我们建议与科学研究一起发表科学代码,以同时阐明建模选择,并能够对现有工作进行阐述。总的来说,本综述指定了不同跨物种外推方法的数据要求,旨在使监管机构和出版商更加意识到需要改进对原始数据和元数据的访问,以使未来的跨物种外推工作取得成功,并将其纳入监管环境。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验