School of Computer Science, Tokyo University of Technology, Tokyo 192-0982, Japan.
Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8577, Japan.
Sensors (Basel). 2020 Nov 16;20(22):6534. doi: 10.3390/s20226534.
Motion capture data are widely used in different research fields such as medical, entertainment, and industry. However, most motion researches using motion capture data are carried out in the time-domain. To understand human motion complexities, it is necessary to analyze motion data in the frequency-domain. In this paper, to analyze human motions, we present a framework to transform motions into the instantaneous frequency-domain using the Hilbert-Huang transform (HHT). The empirical mode decomposition (EMD) that is a part of HHT decomposes nonstationary and nonlinear signals captured from the real-world experiments into pseudo monochromatic signals, so-called intrinsic mode function (IMF). Our research reveals that the multivariate EMD can decompose complicated human motions into a finite number of nonlinear modes (IMFs) corresponding to distinct motion primitives. Analyzing these decomposed motions in Hilbert spectrum, motion characteristics can be extracted and visualized in instantaneous frequency-domain. For example, we apply our framework to (1) a jump motion, (2) a foot-injured gait, and (3) a golf swing motion.
运动捕捉数据被广泛应用于医学、娱乐和工业等不同的研究领域。然而,大多数使用运动捕捉数据的运动研究都是在时域中进行的。为了理解人类运动的复杂性,有必要在频域中分析运动数据。在本文中,为了分析人体运动,我们提出了一个使用希尔伯特-黄变换(HHT)将运动转换到瞬时频域的框架。HHT 的经验模态分解(EMD)将从实际实验中捕获的非平稳和非线性信号分解为伪单色信号,即固有模态函数(IMF)。我们的研究表明,多元 EMD 可以将复杂的人体运动分解为与不同运动基元相对应的有限数量的非线性模态(IMF)。在希尔伯特谱中分析这些分解的运动,可以在瞬时频域中提取和可视化运动特征。例如,我们将我们的框架应用于(1)跳跃运动,(2)脚部受伤步态,和(3)高尔夫挥杆运动。