Suppr超能文献

基于希尔伯特-黄变换结合F检验的频谱去噪

Spectral denoising based on Hilbert-Huang transform combined with F-test.

作者信息

Bian Xihui, Ling Mengxuan, Chu Yuanyuan, Liu Peng, Tan Xiaoyao

机构信息

Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, China.

Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Sichuan, China.

出版信息

Front Chem. 2022 Aug 30;10:949461. doi: 10.3389/fchem.2022.949461. eCollection 2022.

Abstract

Due to the influence of uncontrollable factors such as the environment and instruments, noise is unavoidable in a spectral signal, which may affect the spectral resolution and analysis result. In the present work, a novel spectral denoising method is developed based on the Hilbert-Huang transform (HHT) and F-test. In this approach, the original spectral signal is first decomposed by empirical mode decomposition (EMD). A series of intrinsic mode functions (IMFs) and a residual () are obtained. Then, the Hilbert transform (HT) is performed on each IMF and to calculate their instantaneous frequencies. The mean and standard deviation of instantaneous frequencies are calculated to further illustrate the IMF frequency information. Third, the F-test is used to determine the cut-off point between noise frequency components and non-noise ones. Finally, the denoising signal is reconstructed by adding the IMF components after the cut-off point. Artificially chemical noised signal, X-ray diffraction (XRD) spectrum, and X-ray photoelectron spectrum (XPS) are used to validate the performance of the method in terms of the signal-to-noise ratio (SNR). The results show that the method provides superior denoising capabilities compared with Savitzky-Golay (SG) smoothing.

摘要

由于环境和仪器等不可控因素的影响,光谱信号中不可避免地存在噪声,这可能会影响光谱分辨率和分析结果。在本工作中,基于希尔伯特-黄变换(HHT)和F检验开发了一种新型光谱去噪方法。在该方法中,首先通过经验模态分解(EMD)对原始光谱信号进行分解,得到一系列本征模态函数(IMF)和一个残差( )。然后,对每个IMF和 进行希尔伯特变换(HT)以计算它们的瞬时频率,计算瞬时频率的均值和标准差以进一步说明IMF频率信息。第三,使用F检验确定噪声频率成分和非噪声频率成分之间的截止点。最后,通过添加截止点之后的IMF分量来重建去噪信号。使用人工化学噪声信号、X射线衍射(XRD)光谱和X射线光电子能谱(XPS)从信噪比(SNR)方面验证该方法的性能。结果表明,与萨维茨基-戈莱(SG)平滑相比,该方法具有卓越的去噪能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验