Suppr超能文献

能否摒弃特征工程?基于生理传感器数据的端到端深度学习情感识别。

Can We Ditch Feature Engineering? End-to-End Deep Learning for Affect Recognition from Physiological Sensor Data.

机构信息

Department of Computational Intelligence, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.

Faculty of Computer Science and Management, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.

出版信息

Sensors (Basel). 2020 Nov 16;20(22):6535. doi: 10.3390/s20226535.

Abstract

To further extend the applicability of wearable sensors in various domains such as mobile health systems and the automotive industry, new methods for accurately extracting subtle physiological information from these wearable sensors are required. However, the extraction of valuable information from physiological signals is still challenging-smartphones can count steps and compute heart rate, but they cannot recognize emotions and related affective states. This study analyzes the possibility of using end-to-end multimodal deep learning (DL) methods for affect recognition. Ten end-to-end DL architectures are compared on four different datasets with diverse raw physiological signals used for affect recognition, including emotional and stress states. The DL architectures specialized for time-series classification were enhanced to simultaneously facilitate learning from multiple sensors, each having their own sampling frequency. To enable fair comparison among the different DL architectures, Bayesian optimization was used for hyperparameter tuning. The experimental results showed that the performance of the models depends on the intensity of the physiological response induced by the affective stimuli, i.e., the DL models recognize stress induced by the Trier Social Stress Test more successfully than they recognize emotional changes induced by watching affective content, e.g., funny videos. Additionally, the results showed that the CNN-based architectures might be more suitable than LSTM-based architectures for affect recognition from physiological sensors.

摘要

为了进一步扩展可穿戴传感器在移动健康系统和汽车工业等各个领域的适用性,需要新的方法来从这些可穿戴传感器中准确提取细微的生理信息。然而,从生理信号中提取有价值的信息仍然具有挑战性——智能手机可以计算步数和计算心率,但它们无法识别情绪和相关的情感状态。本研究分析了使用端到端多模态深度学习 (DL) 方法进行情感识别的可能性。在四个不同的数据集上比较了十种端到端 DL 架构,这些数据集使用不同的原始生理信号进行情感识别,包括情绪和压力状态。专门用于时间序列分类的 DL 架构得到了增强,以便同时促进来自具有不同采样频率的多个传感器的学习。为了在不同的 DL 架构之间进行公平比较,使用贝叶斯优化进行了超参数调整。实验结果表明,模型的性能取决于情感刺激引起的生理反应的强度,即 DL 模型识别由特里尔社会应激测试引起的压力比识别观看情感内容(如有趣的视频)引起的情绪变化更成功。此外,结果表明,对于从生理传感器进行情感识别,基于 CNN 的架构可能比基于 LSTM 的架构更合适。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2103/7697590/ff9cdaee19c2/sensors-20-06535-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验