Suppr超能文献

神经自适应贝叶斯优化与假设检验。

Neuroadaptive Bayesian Optimization and Hypothesis Testing.

机构信息

The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, London, W12 0NN, UK; Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.

The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, London, W12 0NN, UK.

出版信息

Trends Cogn Sci. 2017 Mar;21(3):155-167. doi: 10.1016/j.tics.2017.01.006. Epub 2017 Feb 21.

Abstract

Cognitive neuroscientists are often interested in broad research questions, yet use overly narrow experimental designs by considering only a small subset of possible experimental conditions. This limits the generalizability and reproducibility of many research findings. Here, we propose an alternative approach that resolves these problems by taking advantage of recent developments in real-time data analysis and machine learning. Neuroadaptive Bayesian optimization is a powerful strategy to efficiently explore more experimental conditions than is currently possible with standard methodology. We argue that such an approach could broaden the hypotheses considered in cognitive science, improving the generalizability of findings. In addition, Bayesian optimization can be combined with preregistration to cover exploration, mitigating researcher bias more broadly and improving reproducibility.

摘要

认知神经科学家通常对广泛的研究问题感兴趣,但由于只考虑了一小部分可能的实验条件,因此使用了过于狭隘的实验设计。这限制了许多研究结果的普遍性和可重复性。在这里,我们提出了一种替代方法,通过利用实时数据分析和机器学习的最新进展来解决这些问题。神经自适应贝叶斯优化是一种强大的策略,可以比目前标准方法更有效地探索更多的实验条件。我们认为,这种方法可以拓宽认知科学中考虑的假设,提高研究结果的普遍性。此外,贝叶斯优化可以与预先注册相结合,以涵盖探索,更广泛地减轻研究人员的偏见并提高可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验